1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,G是正方形ABCD内一点,以GC为边长,作正方形GCEF,连接B
2、G和DE,试用旋转的思想说明线段BG与DE的关系()ADEBGBDEBGCDEBGDDEBG2、关于函数,下列说法:函数的最小值为1;函数图象的对称轴为直线x3;当x0时,y随x的增大而增大;当x0时,y随x的增大而减小,其中正确的有()个A1B2C3D43、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,图2是点运动时随变化的关系图象,则的长为()ABCD4、如图,点A、B、C在O上,且ACB=100o,则度数为()A160oB120oC100oD80o5、如图,是上直径两侧的两点设,则()ABCD二、多选题(5小题,每小题4分,共计20分)1、已知,为半径是3的圆周上两点
3、,为的中点,以线段,为邻边作菱形,顶点恰在该圆直径的三等分点上,则该菱形的边长为()ABCD 线 封 密 内 号学级年名姓 线 封 密 外 2、请观察下列美丽的图案,你认为既是轴对称图形,又是中心对称图形的是()ABCD3、如图,抛物线过点,对称轴是直线下列结论正确的是()ABC若关于x的方程有实数根,则D若和是抛物线上的两点,则当时,4、如图,在ABC中,ABBC,将ABC绕点B顺时针旋转a度,得到A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:其中正确的有()ACDFa度BA1ECFCDFFCDBEBF5、如图,AB为O直径,弦CDAB于E,则下面结论中正确的
4、是()ACE=DEB弧BC=弧BDCBAC=BADDOE=BE第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、写出一个满足“当时,随增大而减小”的二次函数解析式_2、如图,已知P是函数y1图象上的动点,当点P在x轴上方时,作PHx轴于点H,连接PO小华用几何画板软件对PO,PH的数量关系进行了探讨,发现POPH是个定值,则这个定值为 _3、定义:由a,b构造的二次函数叫做一次函数yaxb的“滋生函数”,一次函数yaxb叫做二次函数的“本源函数”(a,b为常数,且)若一次函数yaxb的“滋生函数”是,那么二次函数的“本源函数”是_ 线 封 密 内 号学级年名姓 线 封 密
5、 外 4、对任意实数a,b,定义一种运算:,若,则x的值为_5、准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_米四、解答题(5小题,每小题8分,共计40分)1、已知抛物线(1)该抛物线的对称轴为 ;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,),N(2,)在该抛物线上,若,求m的取值范围2、如图,矩形ABCD中,AB2 cm,BC3 cm,点E从点B沿BC以2 cm/s的速度向点C移动,同时点F从点C沿CD以1
6、 cm/s的速度向点D移动,当E,F两点中有一点到达终点时,另一点也停止运动当AEF是以AF为底边的等腰三角形时,求点E运动的时间3、如图,CD是O的直径,EOD=84,AE交O于点B,且AB=OB,求A的度数4、陕西某景区吸引了大量中外游客前来参观,如果游客过多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系在这种情况下,如果要保证每周3 000万元的门票收入,那么每周应限定旅游人数是多少万人?门票价格应是多少元?5、正方形ABCD的四个顶点
7、都在O上,E是O上的一点(1)如图,若点E在上,F是DE上的一点,DF=BE求证:ADFABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE请说明理由;(3)如图,若点E在上连接DE,CE,已知BC=5,BE=1,求DE及CE的长 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、A【解析】【分析】根据四边形ABCD为正方形,得出BC=DC,BCD=90,根据四边形CEFG为正方形,得出GC=EC,GCE=90,再证BCG=DCE,BCG与DCE具有可旋转的特征即可【详解】解:四边形ABCD为正方形,BC=DC,BCD=90,四
8、边形CEFG为正方形,GC=EC,GCE=90,BCG+GCD=GCD+DCE=90,BCG=DCE,BCG绕点C顺时针方向旋转90得到DCE,BG=DE,故选项A【考点】本题考查图形旋转特征,正方形性质,三角形全等条件,同角的余角性质,掌握图形旋转特征,正方形性质,三角形全等条件是解题关键2、B【解析】【分析】根据所给函数的顶点式得出函数图象的性质从而判断选项的正确性【详解】解:,该函数图象开口向上,有最小值1,故正确;函数图象的对称轴为直线,故错误;当x0时,y随x的增大而增大,故正确;当x3时,y随x的增大而减小,当3x0时,y随x的增大而增大,故错误故选:B【考点】本题考查二次函数的性
9、质,解题的关键是能够根据函数解析式分析出函数图象的性质3、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值【详解】解:由图2可知,当P点位于B点时,即,当P点位于E点时,即,则,,即, 线 封 密 内 号学级年名姓 线 封 密 外 ,点为的中点,,故选:C【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法4、A【解析】【
10、分析】在O取点,连接 利用圆的内接四边形的性质与一条弧所对的圆心角是它所对的圆周角的2倍,可得答案【详解】解:如图,在O取点,连接 四边形为O的内接四边形, 故选A【考点】本题考查的是圆的内接四边形的性质,同弧所对的圆心角是它所对的圆周角的2倍,掌握相关知识点是解题的关键5、D【解析】【分析】先利用直径所对的圆周角是直角得到ACB=90,从而求出BAC,再利用同弧所对的圆周角相等即可求出BDC【详解】解:C ,D是O上直径AB两侧的两点,ACB=90,ABC=25,BAC=90-25=65,BDC=BAC=65,故选:D【考点】本题考查了圆周角定理的推论,即直径所对的圆周角是90和同弧或等弧所
11、对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法二、多选题1、BD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】过B作直径,连接AC交AO与E,再根据两种情况求出BD的两个长度,再求得OD,OE,DE的值连接OD,根据勾股定理得到结论【详解】点B为的中点BDAC如图点D恰再该圆直径的三等分点上BD=2OD=OB-BD=1四边形ABCD是菱形DE=1OE=2连接OCCE= 边CD=如下图 BD=4同理可得,OD=1,OE=1,DE=2,连接OC,CE=CD=故选:BD【考点】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确地作出图形是解
12、题的关键2、AB【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据轴对称图形(如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合)和中心对称图形(把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合)的定义进行判断【详解】A选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形能够与原来的图形重合,是中心对称图形,所以符合题意;B选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形能够与原来的图形重合,是中心对称图形,所以符合题意;C选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形不能够与原来的图
13、形重合,不是中心对称图形,所以不符合题意;D选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形不能够与原来的图形重合,不是中心对称图形,所以不符合题意故选:AB【考点】考查中心对称图形和轴对称图形的概念,解题关键是熟记其概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形3、D【解析】【详解】解:A.抛物线开口向下,a0,对称轴在y轴左侧,a、b同号,b0,abc0,故此选项不符合题意;B.(4a+c)2-(2b)2=(4a+c+2b)(4a
14、+c-2b),抛物线过点,对称轴是直线,抛物线与x轴另一交点为(2,0), 当x=2时,y=ax2+bx+c=4a+c+2b=0,(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,(4a+c)2=4b2,故此选项不符合题意;C.,b=2a,当x=2时,y=ax2+bx+c=4a+c+2b=0,4a+c+4a=0,c=-8a,关于x的方程有实数根,=b2-4a(c-m)0,(2a)2-4a(-8a-m) 0,a|x2+1|,点(x1,y1)到对称轴的距离大于点(x2,y2) 到对称轴的距离,y1y2,故此选项符合题意;故选:D【考点】本题考查二次函数图象与系数的关系,二次函数
15、的性质,二次函数与一元二次方程的联系,熟练掌握二次函数图象性质是解题的关键4、ABD【解析】【分析】根据等腰三角形的性质由BABC得AC,再根据旋转的性质得BABA1BCBC1,ABA1CBC1,AA1CC1,而根据对顶角相等得BFC1DFC,于是可根据三角形内角和定理得到CDFFBC1;利用“ASA”证明BAEBC1F,则BEBF,所以A1ECF;由于CDF,则只有当旋转角等于C时才有DFFC【详解】解:BABC,AC,ABC绕点B顺时针旋转度,得到A1BC1,BABA1,BCBC1,ABA1CBC1,AA1CC1,BFC1DFC,CDFFBC1,所以A正确,BABA1BCBC1,在BAE和
16、BC1F中,BAEBC1F(ASA),BEBF,故D正确而BA1BC,A1ECF,所以B正确;CDF,当旋转角等于C时,DFFC,所以C错误;故选ABD【考点】本题主要考查了旋转的性质,全等三角形的性质与判定,等腰三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.5、ABC【解析】【分析】根据垂径定理知,垂直于弦的直径平分弦,并且平分线所对的两条弧,即可判断A选项、B选项正确,由圆周角定理知,在同圆或等圆中,同弧所对的圆周角相等,可判断C选项正确,题目中并没有提到E是OB中点,所以不能证明OE=BE【详解】A. AB为O直径,弦CDAB于E, 线 封 密 内 号学级年
17、名姓 线 封 密 外 由垂径定理得:CE=DE,A选项正确;B.由垂径定理得:,B选项正确;C. ,由圆周角定理得:BAC=BAD,C选项正确;D. E不一定是OB中点,所以不能证明OE=BE,D错误故选:ABC【考点】本题考查垂径定理和圆周角定理,熟知垂直于弦的直径平分弦,并且平分线所对的两条弧是解题的关键三、填空题1、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边, y 随 x 增大而减小,得出a0,于是去a=-1,即可解答【详解】解:设抛物线的解析式为y=a(x-2)2,在抛物线对称轴的右边, y 随
18、 x 增大而减小,a0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案【详解】解:设p(x,x2-1),则OH=|x|,PH=|x2-1|,当点P在x轴上方时,x2-10,PH=|x2-1|=x2-1,在RtOHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,OP=x2+1,OP-PH=(x2+1)-(x2-1)=2,故答案为:2【考点】本题考查二次函数图象上点的坐标特征,勾股定理,利用坐标求线段长度是解题的关键3、 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】由“滋生函数”和“本源函数”的定义,运用待定系数法求出函数的本源函
19、数【详解】解:由题意得解得函数的本源函数是故答案为:【考点】本题考查新定义运算下的一次函数和二次函数的应用,解题关键是充分理解新定义“本源函数”4、2或-3#-3或2【解析】【分析】根据题意得到关于x的一元二次方程,解方程即可【详解】解:,解得或,故答案为:2或-3【考点】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键5、1.25【解析】【分析】设小路的宽度为,根据图形所示,用表示出小路的面积,由小路面积为80平方米,求出未知数.【详解】设小路的宽度为,由题意和图示可知,小路的面积为,解一元二次方程,由,可得.【考点】本题综合考查一元二次方程的列法和求解,这类实际应
20、用的题目,关键是要结合题意和图示,列对方程.四、解答题1、(1)直线x=-1;(2)或;(3)当a0时,m4或m2;当a0时,4m2【解析】【分析】(1)利用二次函数的对称轴公式即可求得(2)根据题意可知顶点坐标,再利用待定系数法即可求出二次函数解析式(3)分类讨论当a0时和a0时二次函数的性质,即可求出m的取值范围【详解】 线 封 密 内 号学级年名姓 线 封 密 外 (1)利用二次函数的对称轴公式可知对称轴故答案为:(2)抛物线顶点在x轴上,对称轴为,顶点坐标为(-1,0)将顶点坐标代入二次函数解析式得:,整理得:,解得:抛物线解析式为或(3)抛物线的对称轴为直线x-1,N(2,y2)关于
21、直线x-1的对称点为(-4,y2)根据二次函数的性质分类讨论()当a0时,抛物线开口向上,若y1y2,即点M在点N或的上方,则m-4或m2;()当a0时,抛物线开口向下,若y1y2,即点M在点N或的上方,则4m2【考点】本题为二次函数综合题,掌握二次函数的性质是解答本题的关键2、(6)s【解析】【分析】设点E运动的时间是x秒根据题意可得方程,解方程即可得到结论【详解】解:设点E运动的时间是x s根据题意可得22(2x)2(32x)2x2,解这个方程得x16,x26,321.5(s),212(s),两点运动了1.5s后停止运动x6答:当AEF是以AF为底边的等腰三角形时,点E运动的时间是(6)s
22、【考点】本题考查了一元二次方程的应用,考查了矩形的性质,等腰三角形的判定及性质,勾股定理的运用3、28【解析】【分析】根据等腰三角形的性质,可得A与AOB的关系,BEO与EBO的关系,根据三角形外角的性质,可得关于A的方程,根据解方程,可得答案【详解】AB=BO,BOC=A,EBO=BOC+A=2A,而OB=OE,得E=EBO=2A,EOD=E+A=3A,而EOD=84,3A=84,A=28【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了三角形的性质与圆的相关知识点,解题的关键是熟练的掌握三角形的性质与圆的认识.4、10万人、300元【解析】【分析】设门票价格为x元,每周旅游
23、人数为y万人,根据题中的图中信息,利用待定系数法即可求解出每周旅游人数y与票价x之间存在一次函数关系,再根据题意列出一元二次方程即可求解【详解】解:设门票价格为x元,每周旅游人数为y万人,每周旅游人数与票价之间存在一次函数关系,设一次函数为ykxb,则有,解得:,由题意得:,解得100,300当x100时,y30;当x300时,y10既要控制人数又要保证收入,每周应限定旅游人数是10万人,门票价格应是300元【考点】本题主要考查一次函数与一元二次方程的实际应用,根据等量关系,列出一次函数解析式和方程,是解题的关键5、(1)证明见解析;(2)理由见解析;(3)DE=7,CE=【解析】【分析】(1
24、)根据正方形的性质,得AB=AD;根据圆周角的性质,得,结合DF=BE,即可完成证明;(2)由(1)结论得AF=AE,;结合BAD=90,得EAF=90,从而得到EAF是等腰直角三角形,即EF=AE;最后结合DE-DF=EF,从而得到答案;(3)连接BD,将CBE绕点C顺时针旋转90至CDH;结合题意,得CBE+CDE=180,从而得到E,D,H三点共线;根据BC=CD,得,从而推导得BEC=DEC=45,即CEH是等腰直角三角形;再根据勾股定理的性质计算,即可得到答案【详解】(1)如图,在正方形ABCD中,AB=AD在ADF和ABE中ADFABE(SAS);(2)由(1)结论得:ADFABE
25、 线 封 密 内 号学级年名姓 线 封 密 外 AF=AE,3=4正方形ABCD中,BAD=90BAF+3=90BAF+4=90EAF=90EAF是等腰直角三角形EF2=AE2+AF2EF2=2AE2EF=AE即DE-DF=AEDE-BE=AE;(3)连接BD,将CBE绕点C顺时针旋转90至CDH四边形BCDE内接于圆CBE+CDE=180E,D,H三点共线在正方形ABCD中,BAD=90BED=BAD=90BC=CDBEC=DEC=45CEH是等腰直角三角形在RtBCD中,由勾股定理得BD=BC=5在RtBDE中,由勾股定理得:DE=在RtCEH中,由勾股定理得:EH2=CE2+CH2(ED+DH)2=2CE2,即(ED+BE)2=2CE264=2CE2CE=4【考点】本题考查了正方形、圆、等腰三角形、勾股定理、全等三角形、旋转的知识;解题的关键是熟练掌握正方形、圆周角、正多边形与圆、等腰三角形、勾股定理、全等三角形、旋转的性质,从而完成求解