收藏 分享(赏)

2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx

上传人:a**** 文档编号:701834 上传时间:2025-12-13 格式:DOCX 页数:24 大小:475.46KB
下载 相关 举报
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第1页
第1页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第2页
第2页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第3页
第3页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第4页
第4页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第5页
第5页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第6页
第6页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第7页
第7页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第8页
第8页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第9页
第9页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第10页
第10页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第11页
第11页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第12页
第12页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第13页
第13页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第14页
第14页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第15页
第15页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第16页
第16页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第17页
第17页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第18页
第18页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第19页
第19页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第20页
第20页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第21页
第21页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第22页
第22页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第23页
第23页 / 共24页
2022年强化训练人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差(

2、)A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关2、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接下列结论一定正确的是()ABCD3、把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A30B90C120D1804、已知x1,x2是一元二次方程2x23x5的两个实数根,下列结论错误的是()A23x15B(x1x2)(2x12x23)0Cx1x2Dx1x25、将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是()A,21B,11C4,21D,69二、多选题(5小题,每小题4分,共计20分)1

3、、如果,是一元二次方程的两个根,那么的值是(),的值是()AB4CD22、关于x的一元二次方程(k1)x2 +4x+k1=0有两个相等的实数根,则k的值为()A1B0C3D33、已知关于的一元二次方程,下列命题是真命题的有()A若,则方程必有实数根B若,则方程必有两个不相等的实根C若是方程的一个根,则一定有成立 线 封 密 内 号学级年名姓 线 封 密 外 D若是一元二次方程的根,则4、如图是抛物线的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),点P在抛物线上,且在直线AB上方,则下列结论正确的是()AB方程有两个相等的实根CD点P到直线AB的最大距离5、下列方程中,

4、有实数根的方程是()A(x1)22B(x+1)(2x3)0C3x22x10Dx2+2x+40第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,平行四边形ABCD中,点的坐标是,以点为顶点的抛物线经过轴上的点A,B,则此抛物线的解析式为_2、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为_元时,该种植户一天的销售收入最大3、若函数图像与x轴的两

5、个交点坐标为和,则_4、我们用符号表示不大于的最大整数例如:,那么:(1)当时,的取值范围是_;(2)当时,函数的图象始终在函数的图象下方则实数的范围是_5、某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是_元四、解答题(5小题,每小题8分,共计40分)1、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-90的两

6、实数根(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值2、已知关于的方程有实根(1)求的取值范围;(2)设方程的两个根分别是,且,试求的值3、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元 线 封 密 内 号学级年名姓 线 封 密 外 (1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单

7、价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?4、解下列方程:(1);(2)5、解关于y的方程:by21y2+2-参考答案-一、单选题1、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无

8、关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键2、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,ACD=BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据EBC=EBC+ABC=A+ABC=-ACB判断选项B不一定正确即可【详解】解:绕点顺时针旋转得到,AC=CD,BC=EC,ACD=BCE,A=CDA=;EBC=BEC=,选项A、C不一定正确,A =EBC,选项D正确EBC=EBC+ABC=A+ABC=-ACB不一定等于,选项B不一定正确;故选D【考点】本题考查了旋转的性质:对应点到旋转中心的距离相

9、等;对应点与旋转中心所连线段的夹角等于旋转 线 封 密 内 号学级年名姓 线 封 密 外 角;旋转前、后的图形全等也考查了等腰三角形的性质3、C【解析】【分析】根据图形的对称性,用360除以3计算即可得解【详解】解:3603=120,旋转的角度是120的整数倍,旋转的角度至少是120故选C【考点】本题考查了旋转对称图形,仔细观察图形求出旋转角是120的整数倍是解题的关键4、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可【详解】解:x1、x2是一元二次方程2x2-3x=5的两个实数根,故A正确,不符合题意;这里a=2,b=-3,c

10、=-5,故B、C正确,不符合题意,D错误,符合题意故选:D【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练掌握根与系数的关系,是解题的关键5、A【解析】【分析】根据配方法步骤解题即可【详解】解:移项得,配方得,即,a=-4,b=21故选:A【考点】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方 线 封 密 内 号学级年名姓 线 封 密 外 二、多选题1、AB【解析】【分析】根据根与系数的关系得到,再根据一元二次方程的根的定义可得,由此即可得出答案【详解】解:、是一元二次方程的两个根,是一元二次方程的根,故选:AB【点睛】本

11、题考查的是一元二次方程的根与系数的关系以及方程的根的定义,即,是一元二次方程的两根时,熟练掌握一元二次方程根与系数的关系是解决本题的关键2、C【解析】【分析】由方程有两个相等的实数根,根据根的判别式可得到关于k的方程,则可求得k的值【详解】解:关于x的一元二次方程(k1)x2+4x+k10有两个相等的实数根,0,即424(k1)20,且k10,解得k3或k-1故选C【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键当0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一

12、元二次方程没有实数根3、ABD【解析】【分析】A正确,利用判别式判断即可B正确,证明0,即可判断C错误,c0时,结论不成立D正确,利用求根公式,判断即可【详解】解:A、当x=2是,4a2bc0,故x2是方程的根;则方程ax2bxc0必有实数根,A正确, B、b24ac(3a2)24a(2a2)9a212a48a28aa24a4(a2)2,a0,0, 线 封 密 内 号学级年名姓 线 封 密 外 方程有两个不相等的实数根,故B正确C、若c是方程ax2bxc0的一个根,ac2bcc0,c(acb1)0,c0或acb10,故C错误D、t是一元二次方程ax2bxc0的根t,b24ac(2atb)2,故

13、D正确,故答案为:A,B,D【点睛】本题考查命题与定理,一元二次方程的根的判别式等知识,解题的关键是学会利用参数解决问题,属于中考常考题型4、BCD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系、坐标系内直线的平移、利用配方法求二次三项式的最值即可一一判断【详解】解:由图象可知,则,故A选项错误;由图象可知,直线与抛物线只有一个交点,则方程有两个相等的实根,故B选项正确;当时,抛物线由最大值,则,即,故C选项正确;设直线AB的表达式为,且A(1,3),B(4,0)在直线上,则,解得,即,由抛物线的对称轴为得,则,即,又 A(1,3),B(4,0)在抛物线上,则,解

14、得,将直线向上平移与抛物线有一个交点时至,要求点P到直线AB的最大距离,即点P为直线与抛物线的交点,过点作于,轴,如图所示,由直线AB可得,为等腰直角三角形, 线 封 密 内 号学级年名姓 线 封 密 外 又直线由直线平移得到,且轴,,是等腰直角三角形,由平移的性质可设直线的表达式为,当与抛物线有一个交点时,即,整理得,由于只有一个交点,则,解得,即直线AB向上平移了:,则,则,点P到直线AB的最大距离,故D选项正确,故选BCD【点睛】本题考查了二次函数的图象及性质、方程与二次函数的关系、函数与不等式的关系、平面直角坐标系内直线的平移,解题的关键学会利用函数图象解决问题,灵活运用相关知识解决问

15、题,本题难点在于要求抛物线上的点到直线的最大距离即求直线平移至与抛物线有一个交点时交点到直线的距离5、ABC【解析】【分析】根据直接开方法可确定A选项正确;根据因式分解法可确定B选项正确;根据方程的判别式,当时,方程有两个不等的实数根,当时,方程有两个相等的实数根,当时,方程无实数根,可判断C选项正确,D选项错误【详解】A.,解得:,方程有实数根,A选项正确;B.,解得:,方程有实数根,B选项正确;C.,方程有实数根,C选项正确;D.,方程无实数根,D选项错误故选:ABC【点睛】本题考查了一元二次方程根的判断,熟练掌握根的判别式是解题的关键三、填空题 线 封 密 内 号学级年名姓 线 封 密

16、外 1、【解析】【分析】根据平行四边形的性质得到CD=AB=4,即C点坐标为,进而得到A点坐标为,B点坐标为,利用待定系数法即可求得函数解析式【详解】四边形ABCD为平行四边形CD=AB=4C点坐标为A点坐标为,B点坐标为设函数解析式为,代入C点坐标有解得函数解析式为,即故答案为【考点】本题考查了平行四边形的性质,和待定系数法求二次函数解析式,问题的关键是求出A点或B点的坐标2、25【解析】【分析】设草莓的零售价为x元/千克,销售收入为y元,由题意得y=30x2+1500x11880,再根据二次函数的性质解答即可【详解】解:设草莓的零售价为x元/千克,销售收入为y元,由题意得,y=x30030

17、(x22)+1830(x22)=30x2+1500x11880,当时,y最大,当草莓的零售价为25元/千克时,种植户一天的销售收入最大故答案为:25【考点】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键3、-2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得【详解】解:函数图像与x轴的两个交点坐标为和由对称轴所在的直线为: 解得 故答案为:-2【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是 线 封 密 内 号学级年名姓 线 封 密 外 解决本题的关键4、 或

18、【解析】【分析】(1)首先利用的整数定义根据不等式确定其整数取值范围,继而利用取整函数定义精确求解x取值范围(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数【详解】(1)因为表示整数,故当时,的可能取值为0,1,2当取0时, ;当取1时, ;当=2时,故综上当时,x的取值范围为:(2)令,由题意可知:,当时,=,在该区间函数单调递增,故当时, ,得当时,=0, 不符合题意当时,=1, ,在该区间内函数单调递减,故当取值趋近于2时,得,当时,因为 ,故,符合题意故综上:或【考点】本题考查函数的新定义取整函数,需要有较强的题意理解能力,分类讨论方法

19、在此类型题目极为常见,根据不同区间函数单调性求解参数为常规题型,需要利用转化思想将非常规题型转化为常见题型5、1264【解析】【分析】根据题意,总利润=快餐的总利润快餐的总利润,而每种快餐的利润=单件利润对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份据题意: 当的时候,W取到最大值1264,故最大利润为1264元故答案为:1264【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点四、解答

20、题1、 (1)m的值为1或-2(2)-2m1(3)m或m【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90解得m1或m-2m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,

21、解得-2m1m的取值范围是-2m1(3)解:由(2)可知方程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【点睛】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.2、(1);(2)不存在【解析】【分析】(1)根据根的判别式即可求出答案(2)根据根与系数的关系即可求出答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:(1),;(2)由题意可

22、知:x1+x2=2,x1x2=,k=,k=不符合题意,舍去,k的值不存在【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练运用根与系数的关系以及根的判别式,本题属于基础题型3、(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【解析】【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案【详解】(1)由题意列方程得:(x40-30) (300-10x)3360 解得:x12,x218要尽可能减少库存,x218不合题意,故舍去T恤的销售单价应提高2元;(2)设利润为M元

23、,由题意可得: M(x40-30)(300-10x)-10x2200x3000 当x10时,M最大值4000元销售单价:401050元当服装店将销售单价50元时,得到最大利润是4000元【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解4、(1),;(2),【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】解:(1),a=3,b=4,c=1, 线 封 密 内 号学级年名姓 线 封 密 外 ,;(2)【点睛】本题考查了

24、解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要针对不同的方程选取恰当的方法是解题关键5、当b1时,原方程的解为y;当b1时,原方程无实数解【解析】【分析】把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案【详解】解:移项得:by2y22+1,合并同类项得:(b1)y23,当b1时,原方程无解;当b1时,原方程的解为y;当b1时,原方程无实数解【点睛】此题主要考查一元二次方程的求解,解题的关键是根据题意分类讨论

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1