1、北师大版八年级数学上册第一章勾股定理章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面图形能够验证勾股定理的有()个A4个B3个C2个D1个2、如图,把长方形纸条ABCD沿EF,GH同时折叠,B
2、,C两点恰好落在AD边的P点处,若FPH90,PF8,PH6,则长方形ABCD的边BC的长为( ) A20B22C24D303、如图,在中,平分交于D点,E,F分别是,上的动点,则的最小值为()ABC3D4、如图,长方形中,将此长方形折叠,使点与点重合,折痕为,则的长为()A12B8C10D135、在自习课上,小芳同学将一张长方形纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形若AB3cm,则阴影部分的面积为()A1cm2B2cm2Ccm2Dcm26、如图,中,一同学利用直尺和圆规完成如下操作:以点C为圆心,以CB为半径画弧,交AB于点
3、G;分别以点G、B为圆心,以大于的长为半径画弧,两弧交点K,作射线CK;以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于N,分别以M、N为圆心,以大于的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E请你观察图形,根据操作结果解答下列问题;过点D作交AB的延长线于点F,若,则CE的长为()A13BCD7、如图,在水塔O的东北方向24m处有一抽水站A,在水塔的 东南方向18m处有一建筑工地B,在AB间建一条直水管,则 水管AB的长为()A40mB45mC30mD35m8、在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正
4、放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A4B5C6D79、如图,在RtABC中,ACB=90,CDAB,垂足为D,AF平分CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()ABCD10、勾股定理是人类最伟大的科学发现之一,在我国古算书周髀算经中早有记载如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A直角三角形的面积B最大正方形的面积C较小两个正方形重叠部分的面积D最大正方形与直角三角形的面积和第卷(非选择题 70分)二、填空题(
5、5小题,每小题4分,共计20分)1、如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了_步路(假设步为米),却踩伤了花草2、我国古代九章算术中有数学发展史上著名的“葭生池中”问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问:葭长几何?(1丈10尺)意思是:有一个长方体池子,底面是边长为1丈的正方形,中间有芦苇,把高出水面1尺的芦苇拉向池边(芦苇没有折断),刚好贴在池边上,问:芦苇长多少尺?答:芦苇长_尺3、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长
6、为10米,问船向岸边移动了_米4、如图,点在正方形的边上,若,那么正方形的面积为_5、如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木板加固,则木板的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,高速公路上有A,B两点相距10km,C,D为两村庄,已知DA4km,CB6km,DAAB于点A,CBAB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,求BE的长2、如图,烟台市正政府决定在相距50km的A、B两村之间的公路旁E点,修建一个大樱桃批发市场,且使C、D两村到E点的距离相等,已知DAAB于A,CBAB于B
7、,DA30km,CB20km,那么大樱桃批发市场E应建什么位置才能符合要求?3、如图,在ABC和DCE中,ACDE,BDCE90,点A,C,D依次在同一直线上,且ABDE(1)求证:ABCDCE;(2)连结AE,当BC5,AC12时,求AE的长4、我方侦查员小王在距离东西向公路400米处侦查,发现一辆敌方汽车在公路上疾驶他赶紧拿出红外线测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?5、阅读理解:【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积小正方形
8、的面积+4个直角三角形的面积从而得数学等式:(a+b)2c2+4ab,化简证得勾股定理:a2+b2c2【初步运用】(1)如图1,若b2a,则小正方形面积:大正方形面积 ;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a4,b6,此时空白部分的面积为 ;(3)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC3,求该风车状图案的面积(4)如图4,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S340,则S2 【迁移运用】如果用三张含60的全等三角形纸片,能否拼成一个特
9、殊图形呢?带着这个疑问,小丽拼出图5的等边三角形,你能否仿照勾股定理的验证,发现含60的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程-参考答案-一、单选题1、A【解析】【分析】分别计算图形的面积进行证明即可【详解】解:A、由可得,故该项的图形能够验证勾股定理;B、由可得,故该项的图形能够验证勾股定理;C、由可得,故该项的图形能够验证勾股定理;D、由可得,故该项的图形能够验证勾股定理;故选:A【考点】此题考查了图形与勾股定理的推导,熟记勾股定理的计算公式及各种图形面积的计算方法是解题的关键2、C【解析】【详解】由折叠得: 在Rt 中,FPH90,PF8,PH6,则 故BC=BF+
10、FH+HC=6+8+10=24.故选C.3、D【解析】【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度【详解】在AB上取一点G,使AGAF在RtABC中,ACB90,AC3,BC4AB=5,CADBAD,AEAE,AEFAEG(SAS)FEGE,要求CE+EF的最小值即为求CE+EG的最小值,故当C、E、G三点共线时,符合要求,此时,作CHAB于H点,则CH的长即为CE+EG的最小值,此时,CH=,即:CE+EF的最小值为,故选:D【考点】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键4、D【解析】【分析】设BE为x,
11、则AE为25-x,在由勾股定理有,即可求得BE=13【详解】设BE为x,则DE为x,AE为25-x四边形为长方形EAB=90在中由勾股定理有即化简得解得故选:D【考点】本题考查了折叠问题求折痕或其他边长,主要可根据折叠前后两图形的全等条件,把某个直角三角形的三边都用同一未知量表示出来,并根据勾股定理建立方程,进而可以求解5、D【解析】【分析】由菱形的性质得到FCOECO,进而证明ECOECBFCO30,2BECE,利用勾股定理得出BC,再解得菱形的面积为2 ,最后由阴影部分的面积 S菱形AECF解题【详解】解:四边形AECF是菱形,AB3,假设BEx,则AE3x,CE3x,四边形AECF是菱形
12、,FCOECO,ECOECB,ECOECBFCO30,2BECE,CE2x,2x3x,解得:x1,CE2,利用勾股定理得出:BC2+BE2EC2,BC,又AEABBE312,则菱形的面积是:AEBC2 阴影部分的面积 S菱形AECF cm2故选:D【考点】本题考查菱形的性质、勾股定理、含30直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键6、D【解析】【分析】先证明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,设CE=CD=DF=x,在RtADF中,利用勾股定理构建方程求解即可【详解】解:由作图知CEAB,BD平分CBF,1=2=3,CEB+3=2+CDE=90,CEB=C
13、DE,CD=CE,在DBC和DBF中,BDCBDF(AAS),CD=DF,BC=BF=5,ACB=90,AC=12,BC=5,AB=,设EC=CD=DF=x,在RtADF中,则有(12+x)2=x2+182,x=,CE=,故选D【考点】本题考查作图-复杂作图,全等三角形的判定和性质,等腰三角形的判定,以及勾股定理等知识,解题的关键是学会构建方程解决问题,属于中考常考题型7、C【解析】【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可【详解】解:OA是东北方向,OB是东南方向,AOB=90,又OA=24m,OB=18m,30m故选:C【考点】本题考查的知识点是解
14、直角三角形的应用,正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键8、A【解析】【详解】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A【考点】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和这里,边的平方的几何意义就是以该边为边的正方形的面积9、A【解析】【分析】根据三角形的内角和定理得出CAF+CFA=90,FAD+AED=90,根据角平分线和对顶角相等得出CEF=CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案【详解】过点F作FGAB于点G,ACB=90,C
15、DAB,CDA=90,CAF+CFA=90,FAD+AED=90,AF平分CAB,CAF=FAD,CFA=AED=CEF,CE=CF,AF平分CAB,ACF=AGF=90,FC=FG,B=B,FGB=ACB=90,BFGBAC,AC=3,AB=5,ACB=90,BC=4,FC=FG,解得:FC=,即CE的长为故选A【考点】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出CEF=CFE10、C【解析】【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可【详解】设直角三角形的斜边长为c,较长直角边为
16、b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),较小两个正方形重叠部分的长=a-(c-b),宽=a,则较小两个正方形重叠部分底面积=a(a+b-c),知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选C【考点】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2二、填空题1、【解析】【分析】少走的距离是AC+BC-AB,在直角ABC中根据勾股定理求得AB的长即可【详解】解:如图,在中, 米,则少走的距离为:米,步为米,少走了步故答案为:【考点】本题考
17、查正确运用勾股定理善于观察题目的信息,掌握勾股定理是解题的关键2、13【解析】【分析】设水深OB=x尺,则芦苇长OA=(x+1)尺,根据勾股定理列方程求解即可【详解】解:根据题意,设水深OB=x尺,则芦苇长OA=(x+1)尺,根据题意列方程得:x2+52=(x+1)2,解得:x=12OA=13尺故答案为:13【考点】此题考查了勾股定理的实际应用,解题的关键是根据题意设出未知数,根据勾股定理列方程求解3、9【解析】【分析】在RtABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长【详解】在RtABC中:CAB90,BC17米
18、,AC8米,AB15(米),CD10(米),AD6(米),BDABAD1569(米),答:船向岸边移动了9米,故答案为:9【考点】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用4、【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可【详解】解:由勾股定理得,正方形的面积,故答案为【考点】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c25、2.5m【解析】【详解】设木棒的长为xm,根据勾股定理可得:x2=22+1.52,解得x=2.5故木棒的长为2.5m故答案为2.5m三、
19、解答题1、4km【解析】【分析】根据题意设出BE的长为xkm,再由勾股定理列出方程求解即可【详解】解:设BExkm,则AE(10x)km,由勾股定理得:在RtADE中,DE2AD2+AE242+(10x)2,在RtBCE中,CE2BC2+BE262+x2,由题意可知:DECE,所以:62+x242+(10x)2,解得:x4所以,EB的长是4km【考点】本题考查了勾股定理的应用,熟练掌握勾股定理是解本题的关键2、大樱桃批发市场E应建在离A站20千米的地方【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方分别求出和,列等式求解即可【详解】解:设大樱桃批发市场E应建在离A站x千米的地方,则千米
20、在直角中,根据勾股定理得:,在直角中,根据勾股定理得:,又C、D两村到E点的距离相等,所以,解得大樱桃批发市场E应建在离A站20千米的地方【考点】本题考查勾股定理的实际应用,掌握两直角边的平方和等于斜边的平方是解题的关键3、(1)见解析;(2)13【解析】【分析】根据题意可知,本题考查平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS以及勾股定理进行求解【详解】解:(1)在ABC和DCE中ABCDCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考点】本题考查平行的性质,全等三角形的判定和勾股定理,熟练掌握判定定理运用以及平行的性质是解决此类问题
21、的关键4、速度为30米每秒【解析】【分析】根据勾股定理求得的长度,再根据速度等于路程除以时间即可求得敌方汽车的速度【详解】,米每秒,答:敌方汽车的速度为30米每秒【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键5、【初步运用】(1)5:9;(2)28;(3)24;(4);【迁移运用】a2+b2abc2,证明见解析【解析】【分析】初步运用:(1)如图1,求出小正方形的面积,大正方形的面积即可;(2)根据空白部分的面积=小正方形的面积2个直角三角形的面积计算即可;(3)可设AC=x,根据勾股定理列出方程可求x,再根据直角三角形面积公式计算即可求解;(4)根据图形的特征得出四边形MNKT的
22、面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1,S2,S3,得出答案即可迁移运用:根据大正三角形面积=三个全等三角形面积+小正三角形面积,构建关系式即可【详解】解:【初步运用】(1)由题意:b=2a,c=,小正方形面积:大正方形面积=5a2:9a2=5:9,故答案为:5:9;(2)空白部分的面积为=52246=28,故答案为:28;(3)244=6,设AC=x,依题意有:(x+3)2+32=(6x)2,解得x=1,面积为:(3+1)34=434=24,故该飞镖状图案的面积是24;(4)将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=40,S1=8y+x,S2=4y+x,S3=x,S1+S2+S3=3x+12y=40,x+4y=,S2=x+4y=,故答案为:;迁移运用结论:a2+b2ab=c2理由:由题意:大正三角形面积=三个全等三角形面积+小正三角形面积,可得:(a+b)k(a+b)=3bka+cck,(a+b)2=3ab+c2,a2+b2ab=c2【考点】本题考查勾股定理的证明和应用,根据图形得出面积关系是解题的关键