1、七年级数学上册第三章整式及其加减必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是()A的系数是3B的次数是3C的各项分别为2a,b,1D多项式是二次三项式2、化简的结果是()AB
2、CD3、下列说法中,正确的是()A0不是单项式B的系数是C的次数是4D的常数项是14、按一定规律排列的单项式:x,3x,5x,7x,9x,第n个单项式是()A(2n-1)B(2n+1)C(n-1)D(n+1)5、如图所示的运算程序中,若开始输入的 x 值为 15,则第 1 次输出的结果为 18,第 2 次输出的结果为 9, 第 2021 次输出的结果为() A3B4C6D96、小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A(3a+4b)元B(4a+3b)元C4(a+b)元D3(a+b)元7、关于多项式,下列说法正确的是()A次数
3、是3B常数项是1C次数是5D三次项是8、下列说法正确的是()A单项式x的系数是0B单项式32xy2的系数是3,次数是5C多项式x2+2x的次数是2D单项式5的次数是19、若单项式am1b2与的和仍是单项式,则nm的值是()A3B6C8D910、生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示即:212,224,238,2416,2532,请你推算22022的个位数字是()A8B6C4D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、多项式 A 加上5x24x+3 等
4、于x24x,则多项式A为 _2、如图,边长为1的正方形,沿数轴顺时针连续滚动起点和重合,则滚动2026次后,点在数轴上对应的数是_3、在下列各式,0,中,其中单项式是_,多项式是_,整式是_(填序号)4、已知,则_5、如果单项式与的和仍是单项式,那么_三、解答题(5小题,每小题10分,共计50分)1、如图:在数轴上点A表示数a,点B表示数b,点C表示数c,数a是多项式的一次项系数,数b是最大的负整数,数c是单项式的次数(1)_,_,_(2)点A,B,C开始在数轴上运动,若点B和点C分别以每秒1个单位长度和每秒3个单位长度的速度向右运动,点A以每秒2个单位长度的速度向左运动,t秒过后,若点A与点
5、B之间的距离表示为,点B与点C之间的距离表示为,则_,_(用含t的代数式表示)(3)试问:的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出这个值2、计算:3(x22xy)(x26xy)4y3、化简:4、已知A=3a2b2ab2+abc,小明同学错将“2AB”看成“2A+B”,算得结果为4a2b3ab2+4abc(1)计算B的表达式;(2)求出2AB的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值5、观察下面依次排列的各数,按照规律写出后面的数及其他要求的数,, ,,_,_,第2019个数是_-参考答案-一、单选题1、A【解析】
6、【分析】根据单项式的次数、系数以及多项式的系数、次数的定义解决此题【详解】解:A根据单项式的系数为数字因数,那么3ab2的系数为3,故A符合题意B根据单项式的次数为所有字母的指数的和,那么4a3b的次数为4,故B不符合题意C根据多项式的定义,2a+b1的各项分别为2a、b、1,故C不符合题意Dx21包括x2、1这两项,次数分别为2、0,那么x21为二次两项式,故D不符合题意故选:A【考点】本题主要考查单项式的系数,次数的定义以及多项式的项、项数以及次数的定义,熟练掌握单项式的系数,次数的定义以及多项式的项、项数以及次数的定义是解决本题的关键2、D【解析】【分析】原式去括号合并即可得到结果【详解
7、】原式=3x-1-2x-2=x-3,故选D【考点】此题考查了整式的加减,熟练掌握运算法则是解本题的关键3、C【解析】【分析】根据单项式和多项式的定义选出正确选项【详解】A正确,一个数也是单项式;B错误,系数是;C正确,次数是;D错误,常数项是故选:C【考点】本题考查单项式和多项式,解题的关键是掌握单项式的系数、次数的定义,多项式的常数项的定义4、A【解析】【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示【详解】解:依题意,得第n项为(2n-1)xn,故选:A【考点】本题考查的是单项式,根据题意找出规律是解答此题的关键5、A【解析】【分析】首先分别求出第3次、第4
8、次、第5次、第6次、第7次、第8次输出的结果各是多少,总结出规律,然后判断出第2021次输出的结果为多少即可【详解】第1次输出的结果为:15+318,第2次输出的结果为:189,第3次输出的结果为:9+312,第4次输出的结果为:126,第5次输出的结果为:63,第6次输出的结果为:3+36,第7次输出的结果为:63,第8次输出的结果为:3+36,第9次输出的结果为:63,从第4次开始,以6,3依次循环,并且第n次(n3)时,如果n-3为偶数,则输出结果为3,如果n-3为奇数,则输出结果为6,(20213)2201821009,第2021次输出的结果为3故选:A【考点】此题考查了程序图的规律问
9、题,解题的关键是正确分析题目中程序的运算规律6、A【解析】【分析】直接利用两种颜色的珠子的价格进而求出手链的价格【详解】解:黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费为:3a+4b故选A【考点】本题考查列代数式,正确得出各种颜色珠子的数量是解题关键7、A【解析】【分析】根据多项式的项、次数等相关概念并结合多项式进行分析,再分别判断即可【详解】解:多项式2x2y3xy1,次数是3,常数项是1,三次项是2x2y,所以四个选项中只有A正确;故答案为:A【考点】本题考查了多项式的项的系数和次数定义的掌握情况解题的关键是弄清多项式次数、常数项的定义8、C【解析】【分析
10、】直接利用单项式和多项式的有关定义分析得出答案【详解】解:A、单项式x的系数是1,故此选项错误;B、单项式32xy2的系数是9,次数是3,故此选项错误;C、多项式x2+2x的次数是2,正确;D、单项式5次数是0,故此选项错误故选:C【考点】此题考查单项式系数和次数定义,及多项式的次数定义,熟记定义是解题的关键9、C【解析】【分析】首先可判断单项式am-1b2与a2bn是同类项,再由同类项的定义可得m、n的值,代入求解即可【详解】解:单项式am-1b2与a2bn的和仍是单项式,单项式am-1b2与a2bn是同类项,m-1=2,n=2,m=3,n=2,10、C【解析】【分析】利用已知得出数字个位数
11、的变化规律进而得出答案【详解】解:212,224,238,2416,2532,尾数每4个一循环,202245052,22022的个位数字应该是:4故选:C【考点】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键二、填空题1、4x23【解析】【分析】根据题意列出关系式,去括号合并即可得到结果【详解】解:根据题意得:A(x24x)(5x24x+3)x24x+5x2+4x34x23故答案为:4x23【考点】此题考查了整式的加减,熟练掌握运算法则是解本题的关键2、2024【解析】【分析】滚动2次点C第一次落在数轴上,再滚动(2026-2)次,得出点C第506次落在数轴上,进而求出相应的数即可
12、【详解】解:将起点A和-2重合的正方形,沿着数轴顺时针滚动2次,点C第1次落在数轴上的原点以后每4次,点C会落在数轴上的某一点,这样滚动2026次,点C第(2026-2)4=506次落在数轴上,因此点C所表示的数为2024,故答案为:2024【考点】本题是利用规律求解问题.解题的关键是要找到规律“正方形ABCD沿着数轴顺时针每滚动一周,B、C、D、A依次循环一次”,同时要注意起点是2,起始循环的字母为点A3、 【解析】【分析】根据单项式、多项式、整式的定义,逐一判断各个代数式,即可【详解】解:,0,是单项式;,是多项式;,0,是整式,故答案是:,【考点】本题主要考查单项式、多项式、整式的定义,
13、熟练掌握上述定义是解题的关键4、【解析】【分析】先添括号把化为,然后将整体代入即可求解【详解】解:,故答案为:【考点】本题考查了代数式求值,熟练掌握添括号法则和整体代入思想是解题关键5、4【解析】【分析】根据题意可知:单项式与单项式是同类项,然后根据同类项的定义即可求出m和n,从而求出结论【详解】解:单项式与单项式的和仍然是单项式,单项式与单项式是同类项,m=3,n=14故答案为:4【考点】此题考查的是求同类项的指数中的参数,掌握合并同类项法则和同类项的定义是解题关键三、解答题1、 (1),(2);(3)值不变,结果为【解析】【分析】(1)由题意知,的一次项系数是,最大的负整数是,单项式的次数
14、是,进而可知的值;(2)由题意知,A运动s后的位置表示为;B运动s后的位置表示为;C运动s后的位置表示为;进而可表示 ;(3)由可知是定值(1)解:的一次项系数是,最大的负整数是,单项式的次数是,故答案为,(2)解:由题意知,A运动s后的位置表示为;B运动s后的位置表示为;C运动s后的位置表示为;,;故答案为;(3)解:是定值,不会随着时间t的变化而改,值为8【考点】本题考查了多项式的系数,单项式的次数,数轴上点的表示,数轴上两点之间的距离解题的关键在于用表示各点的位置2、【解析】【分析】根据整式的加减运算,对式子进行求解即可【详解】解:【考点】此题考查了整式的加减运算,解题的关键是掌握整式加
15、减运算法则3、【解析】【分析】根据整式的加减计算法则和去括号法则求解即可【详解】解:【考点】本题主要考查了整式的加减计算,去括号,熟知相关计算法则是解题的关键4、(1)2a2b+ab2+2abc;(2) 8a2b5ab2;(3)对,0【解析】【分析】(1)根据B4a2b3ab2+4abc2A列出关系式,去括号合并即可得到B;(2)把A与B代入2A-B中,去括号合并即可得到结果;(3)把a与b的值代入计算即可求出值【详解】解:(1)2AB4a2b3ab2+4abc,B4a2b3ab2+4abc2A4a2b3ab24abc2(3a2b2ab2abc)4a2b3ab24abc6a2b4ab22abc
16、2a2bab22abc;(2)2AB2(3a2b2ab2abc)(2a2bab22abc) 6a2b4ab22abc2a2bab22abc8a2b5ab2;(3)对,由(2)化简的结果可知与c无关,将a,b代入,得8a2b5ab2850【考点】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项5、, ,【解析】【分析】分子是1,分母是从1开始连续的自然数,符号为+-“,四个数一组,由此得出第9个数为,第10个数为,20194=5043所以第2019个数的符号为“-”,进一步求得答案即可【详解】由已知得分子是1,分母是从1开始连续的自然数,符号为“+”,第9个数为,第10个数为,20194=5043,第2019个数为负数,第2019个数为,故答案为, ,.【考点】此题考查规律型:数字的变化类,解题关键在于找到其规律.