1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,ABC和EDF中,BD90,AE,点B,F,C,D在同一条直线
2、上,再增加一个条件,不能判定ABCEDF的是()AABEDBACEFCACEFDBFDC2、点 A (2,-1)关于 y 轴对称的点 B 的坐标为()A(2, 1)B(-2,1)C(2,-1)D(-2,- 1)3、能说明“锐角,锐角的和是锐角”是假命题的例证图是()ABCD4、等腰三角形有两条边长为5cm和9cm,则该三角形的周长是A19cmB23cmC19cm或23cmD18cm5、 “三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,点,可在槽中滑动,若,则的度数是()A60B
3、65C75D80二、多选题(5小题,每小题4分,共计20分)1、下列不是真命题的是()A如果 ab,ac,那么 bcB相等的角是对顶角C一个角的补角大于这个角D一个三角形中至少有两个锐角2、下列图形中对称轴不是只有两条的是() 线 封 密 内 号学级年名姓 线 封 密 外 A圆B等边三角形C矩形D等腰梯形3、用下列一种正多边形可以拼地板的是()A正三角形B正六边形C正八边形D正十二边形4、若,则的值为()ABC20D105、如图,已知于点D,现有四个条件:;那么能得出的条件是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,BH 是钝角三角形 ABC 的
4、高,AD 是角平分线, 且2C=90-ABH,若 CD=4,ABC 的面积为 12, 则 AD=_2、若关于x的分式方程的解是正数,则k的取值范围是_3、全民齐心协力共建共享文明城区建设某服装加工厂计划为环卫工人生产1200套冬季工作服,在加工完480套后,工厂引进了新设备,结果工作效率比原计划提高了20%,结果共用54天完成了全部生产任务若设该加工厂原计划每天加工x套冬季工作服,则根据题意列方程为_4、方程的解为_5、如图,中,点D、点E分别在边、上,连结、,若,且的周长比的周长大6则的周长为_四、解答题(5小题,每小题8分,共计40分)1、如图,在中,D是边上的点,垂足分别为E,F,且求证
5、:2、先化简,再求值:-,其中a=(3-)0+-.3、计算:(1)(2)4、如图,点D,E在ABC的边BC上,ABAC,ADAE,求证:BDCE 线 封 密 内 号学级年名姓 线 封 密 外 5、已知,均为整数,且,求的所有可能值-参考答案-一、单选题1、C【解析】【分析】根据全等三角形的判定方法即可判断.【详解】A. ABED,可用ASA判定ABCEDF;B. ACEF,可用AAS判定ABCEDF;C. ACEF,不能用AAA判定ABCEDF,故错误;D. BFDC,可用AAS判定ABCEDF;故选C.【考点】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.2、D【解析】
6、【分析】根据点坐标关于轴对称的变换规律即可得【详解】解:点坐标关于轴对称的变换规律:横坐标互为相反数,纵坐标相同则点关于轴对称的点的坐标为,故选:D【考点】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键3、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案【详解】解:A、如图1,1是锐角,且1=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意; B、如图2,2是锐角,且2=,所以此图说明“锐角,锐角的和是锐角”是真命题,故 线 封 密 内 号学级年名姓 线 封 密 外 本选项不符合题意;C、如图3,3是钝角,且3=,
7、所以此图说明“锐角,锐角的和是锐角”是假命题,故本选项符合题意;D、如图4,4是锐角,且4=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意故选:C【考点】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键4、C【解析】【分析】根据周长的计算公式计算即可.(三角形的周长等于三边之和.)【详解】根据三角形的周长公式可得:C=5+5+9=19或C=9+9+5=23.【考点】本题主要考查等腰三角形的性质,关键在于本题没有说明那个长是等腰三角形的腰,因此要分类讨论.5、D【解析】【分析】根据OC=CD=DE,可得O
8、=ODC,DCE=DEC,根据三角形的外角性质可知DCE=O+ODC=2ODC据三角形的外角性质即可求出ODC数,进而求出CDE的度数【详解】,设,即,解得:,.故答案为D.【考点】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键二、多选题1、ABC【解析】【分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可【详解】解:A、如果 ab,ac,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题; 线 封 密 内 号学级年名姓 线 封 密 外 D、一个三角形中至少有两
9、个锐角,原命题是真命题;故选:ABC【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属于基础知识,难度不大2、AB【解析】【分析】根据轴对称及对称轴的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,结合所给图形即可作出判断【详解】解:根据轴对称图形及对称轴的定义可知:A、圆有无数条对称轴, B、等边三角形有3条对称轴, C、矩形有2条对称轴, D、等腰梯形有1条对称轴,对称轴不只有两条的是:AB,故选:AB【考点】本题考查了轴对称图形及对称轴的定义,熟悉相关性质是解题的关键3、AB【解
10、析】【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案【详解】解:A、 正三边形的一个内角度数为18036,是360的约数,可以拼地板,符合题意; B、正六边形的每个内角是120,能整除360,可以拼地板符合题意; C. 正八边形的一个内角度数为(8-2)1808135,不是360的约数,不可以拼地板,不符合题意;D.正十二边形的一个内角度数为(12-2)18012150,不是360的约数,不可以拼地板,不符合题意;故选AB【考点】本题考查了平面镶嵌(拼地板),计算正多边形的内角能否整除360是解答此题的关键4、AD【解析】【分析】根据完全平方公式的变形先求得的值,进而求
11、得的值,即可求解【详解】,故选AD【考点】本题考查了完全平方公式的变形,求得的值是解题的关键5、ABC 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据全等三角形的判定方法,即可求解【详解】解:, ,A、若,可用角角边证得,故本选项符合题意;B、若,可用角角边证得,故本选项符合题意;C、若,可用边角边证得,故本选项符合题意;D、若,是角角角,不能证得,故本选项不符合题意;故选:ABC【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、边边边是解题的关键三、填空题1、3【解析】【分析】根据三角形的外角性质和已知条件易证明ABCC,则可判断ABC为
12、等腰三角形,然后根据等腰三角形的性质可得ADBC,BDCD4,再利用三角形面积公式即可求出AD的长【详解】解:BH为ABC的高,AHB90,BAH90ABH,而2C90ABH,BAH2C,BAHC+ABC,ABCC,ABC为等腰三角形,AD是角平分线,ADBC,BDCD4,ABC的面积为12,ADBC12,即AD812,AD3故答案为:3【考点】本题考查了三角形的外角性质、等腰三角形的判定和性质以及三角形的面积,熟练掌握上述知识是解题的关键2、且【解析】【分析】根据题意,将分式方程的解用含的表达式进行表示,进而令,再因分式方程要有意义则,进而计算出的取值范围即可【详解】解: 线 封 密 内 号
13、学级年名姓 线 封 密 外 根据题意且k的取值范围是且【考点】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键3、【解析】【分析】设该加工厂原计划每天加工x套冬季工作服,则实际每天加工套,则按原计划的效率加工天,按提高后的工作效率加工天,从而可得答案【详解】解:设该加工厂原计划每天加工x套冬季工作服,则提高效率后每天加工套, 故答案为:【考点】本题考查的是分式方程的应用,掌握利用分式方程解决工作量问题是解题的关键4、【解析】【分析】先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可【详解】解:故答案为:【考
14、点】本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键5、12【解析】【分析】设AC=4a,AB=6a,BC=8a,根据全等三角形的性质得到AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,由题意得方程18a-12a=6,即可求解【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:AC:AB:BC=2:3:4,设AC=4a,AB=6a,BC=8a,ADEBDE,AD=BD,AE=BE,再设AE=BE=x,则EC=8a-x,ABC的周长= AC+AB+BC=4a+6a +8a=18a,AEC的周长= AC+AE+EC=4
15、a+x +8a-x=12a,由题意得:18a-12a=6,解得:a=1,AEC的周长为12,故答案为:12【考点】本题考查了全等三角形的性质,解一元一次方程,正确的识别图形是解题的关键四、解答题1、见解析【解析】【分析】由得出,由SAS证明,得出对应角相等即可【详解】证明:,在和中,【考点】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观2、,;.【解析】【分析】根据分式的运算法则及混合运算顺序先把分式化为最简分式,再求得a的值,代入即可求解.【详解】解:原式=-=-=-=.a=(3-)0+-=1+3-1=3,原式=-.【考点】 线 封 密 内 号学级
16、年名姓 线 封 密 外 本题考查了分式的化简求值,把分式化为最简分式及正确求得a的值是解决问题的关键.3、(1)-4y2;(2)x-2【解析】(1)按照整式的加减乘除运算法则,先去括号,再合并同类项(2) 按照分式的加减乘除法则,先算括号里面的,括号里面先通分,再加减,再化除为乘,能约分的要约分【详解】解:(1)原式=,=,=;(2)原式=x-2【考点】本题考查了整式的加减乘除运算,以及分式的加减乘除混合运算,解题的关键是熟练掌握整式,分式的加减乘除运算法则4、见解析【解析】【分析】过A作AFBC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案【详解】证明:如图,过A作AFBC于F,AB=AC,AD=AE,BF=CF,DF=EF,BF-DF=CF-EF,BD=CE【考点】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合5、,【解析】【分析】根据多项式乘以多项式的计算法则求出即可得到,由此进行求解即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:,a,b,均为整数,或或或或或或或,或或,或或m取的值有5或7【考点】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加