1、人教版八年级数学上册第十五章分式专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列哪个是分式方程()ABCD2、若分式在实数范围内有意义,则实数x的取值范围是()Ax2Bx2Cx=2Dx23、下
2、列式子:,其中分式有()A1个B2个C3个D4个4、一支部队排成a米长队行军,在队尾的战士要与最前面的团长联系,他用t1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t2分钟如果他从最前头跑步回到队尾,那么他需要的时间是()A分钟B分钟C分钟D分钟5、解分式方程3=时,去分母可得()A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=46、若分式的值为0,则x的值为A3BC3或D07、方程的解是()ABCD8、若,则的大小关系为()ABCD9、若a0.32,b(3)2,c()2,d()0,则()AabcdBabdcCadcbDcadb10、已知,则分式与的大小关系是(
3、)ABCD不能确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程的解是_2、若是关于的方程的解,则的值为_3、用换元法解方程,如果设,那么原方程组可化为关于,的方程组是_4、化简: _5、如果分式有意义,那么的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)(2)2、(1)约分:(2)化简:(3)先化简,再求值:,其中3、先化简,再求值:,其中4、计算:(1);(2)5、观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,按照以上规律,解决下列问题:(1)写出第6个等式:_;(2)写出你猜想的第n个等式:
4、_(用含n的等式表示),并证明-参考答案-一、单选题1、B【解析】【分析】根据分式方程的定义对各选项进行逐一分析即可【详解】解:,是整式方程,故此选项不符合题意;,是分式方程,故此选项符合题意;,是整式方程,故此选项不符合题意;,是整式方程,故此选项不符合题意【考点】本题考查的是分式方程的定义,熟知分母中含有未知数的方程叫做分式方程是解答此题的关键2、D【解析】【分析】直接利用分式有意义的条件分析得出答案【详解】代数式在实数范围内有意义,x+20,解得:x2,故选D【考点】本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键3、B【解析】【分析】根据分母中含有字母的式子是
5、分式,可得答案【详解】解:,的分母中含有字母,属于分式,共有2个故选:B【考点】本题考查了分式的定义,熟悉相关性质,注意是常数,是解题的关键4、C【解析】【分析】根据题意得到队伍的速度为,队尾战士的速度为,可以得到他从最前头跑步回到队尾,那么他需要的时间是,化简即可求解【详解】解:由题意得:分钟故选:C【考点】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键5、B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断【详解】方程两边同时乘以(x-2),得13(x2)=4,故选B【考点】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意
6、事项是解题的关键.6、A【解析】【分析】根据分式的值为零的条件可以求出x的值【详解】由分式的值为零的条件得x-3=0,且x+30,解得x=3故选A【考点】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可7、D【解析】【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解【详解】解:方程可化简为经检验是原方程的解故选D【考点】本题考察了分式方程及其解法,熟练掌握解分式方程的步骤是解决此类问题的关键8、B【解析】【分析】可以采用取特殊值法,逐一求解,然后进行判断即可【详解】令,故选B【考点】本题考查了实数的大小
7、比较,负整数指数幂,整数指数幂,解决此类题可以选用取特殊值法进行求解9、B【解析】【详解】a0.32=-0.09,b(3)2=,c=9,d=1,abdc.故选B.10、A【解析】【分析】将两个式子作差,利用分式的减法法则化简,即可求解【详解】解:,故选:A【考点】本题考查分式的大小比较,掌握作差法是解题的关键二、填空题1、-3【解析】【分析】根据解分式方程的步骤去分母,解方程,检验解答即可【详解】解:方程的两边同乘,得:,解这个方程,得:,经检验,是原方程的解,原方程的解是故答案为-3【考点】本题考查分式方程的解法,掌握分式方程的解题步骤是关键2、【解析】【分析】把代入方程,得到关于的一元一次
8、方程,再解方程即可.【详解】解: 是关于的方程的解, 解得: 故答案为:【考点】本题考查的是分式方程的解,掌握“把分式方程的解代入原方程求解未知系数的值”是解本题的关键.3、【解析】【分析】设,则,从而得出关于、的二元一次方程组【详解】解:设,原方程组变为故答案为:【考点】本题考查用换元法使分式方程简便换元后再在方程两边乘最简公分母可以把分式方程转化为整式方程应注意换元后的字母系数4、【解析】【分析】根据分式混合运算的顺序,依次计算即可【详解】=故答案为【考点】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键5、且#x-3且x1【解析】【分析】根据分式有意义的条件,零指
9、数幂的运算法则列不等式求解【详解】解:由题意可得:,且,故答案为:且【考点】本题考查分式有意义的条件,零指数幂的运算,解题的关键是掌握分式有意义的条件(分母不能为零),三、解答题1、(1)x=;(2)x=【解析】【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:(1),去分母,得3x=2x+3(x+1),解得:x=,经检验,x=是原分式方程的解(2),去分母,得2-(x+2)=3(x-1),解得:x=,经检验,x=是原分式方程的解【考点】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注
10、意要验根2、(1);(2);(3)【解析】【分析】(1)根据分式的基本性质进行约分即可;(2)根据同分母分式的减法计算法则先合并,再利用分式的基本性质化简即可;(3)先根据异分母分式加减计算法则合并,然后约分,最后代值计算即可【详解】解:(1)原式;(2)原式;(3)原式,设,原式【考点】本题主要考查了分式的约分,分式的加减计算,分式的化简求值,熟知相关公式和计算法则是解题的关键3、,-10【解析】【分析】根据分式的减法运算以及乘除运算进行化简,然后将x的值代入原式即可求出答案【详解】解:.当x5时,原式-10.【考点】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则
11、,本题属于基础题型4、(1);(2)【解析】【分析】(1)先计算有理数的乘方,零次幂,负整数指数幂的运算,再计算乘法运算,最后计算加减,从而可得答案;(2)先计算多项式乘以多项式,单项式乘以多项式,再合并同类项即可.【详解】解:(1) (2) 【考点】本题考查的是零次幂与负整数指数幂的含义,整式的乘法运算,掌握零次幂与负整数指数幂的含义及整式的乘法运算的运算法则是解题的关键.5、(1);(2),证明见解析【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边=1,右边=1,左边=右边,原等式成立,第n个等式为:,故答案为【考点】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键