收藏 分享(赏)

2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx

上传人:a**** 文档编号:696643 上传时间:2025-12-13 格式:DOCX 页数:31 大小:720.47KB
下载 相关 举报
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第1页
第1页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第2页
第2页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第3页
第3页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第4页
第4页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第5页
第5页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第6页
第6页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第7页
第7页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第8页
第8页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第9页
第9页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第10页
第10页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第11页
第11页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第12页
第12页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第13页
第13页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第14页
第14页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第15页
第15页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第16页
第16页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第17页
第17页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第18页
第18页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第19页
第19页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第20页
第20页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第21页
第21页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第22页
第22页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第23页
第23页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第24页
第24页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第25页
第25页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第26页
第26页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第27页
第27页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第28页
第28页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第29页
第29页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第30页
第30页 / 共31页
2022年人教版八年级数学上册第十二章全等三角形专项测试试题(含答案解析).docx_第31页
第31页 / 共31页
亲,该文档总共31页,全部预览完了,如果喜欢就下载吧!
资源描述

1、八年级数学上册第十二章全等三角形专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,ACB90,ACBC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方

2、向旋转90得到线段CE,连结DE交BC于点F,连接BE当ADBF时,BEF的度数是()A45B60C62.5D67.52、中,厘米,厘米,点D为AB的中点如果点P在线段BC上以v厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度为3厘米秒,则当与全等时,v的值为AB3C或3D1或53、如图,ABC和EDF中,BD90,AE,点B,F,C,D在同一条直线上,再增加一个条件,不能判定ABCEDF的是()AABEDBACEFCACEFDBFDC4、有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中

3、点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么OABOCD理由是()A边角边B角边角C边边边D角角边5、已知锐角,如图,(1)在射线上取点,分别以点为圆心,长为半径作弧,交射线于点,;(2)连接,交于点根据以上作图过程及所作图形,下列结论错误的是()ABC若,则D点在的平分线上6、如图,OB平分AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个就能使DOEFOE,你认为要添加的那个条件是()AOD=OEBOE=OFCODE =OEDDODE=OFE7、如图,ABC的三边AB,B

4、C,CA长分别是20,30,40,其三条角平分线将ABC分为三个三角形,则SABO:SBCO:SCAO等于()A1:1:1B1:2:3C2:3:4D3:4:58、如图,在梯形中,那么下列结论不正确的是( )ABCD9、已知,如图,在ABC中,D为BC边上的一点,延长AD到点E,连接BE、CE,ABD+3=90,1=2=3,下列结论:ABD为等腰三角形;AE=AC;BE=CE=CD;CB平分ACE其中正确的结论个数有()A1个B2个C3个D4个10、如图,已知图中的两个三角形全等,则的度数是()A72B60C58D50第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我们定

5、义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比”(),那么三边长分别为7,24,25的三角形的最小角割比是_2、如图,点,在同一直线上,若线段与线段的长度之比为,则线段与线段的长度之比为_3、如图,中,D为延长线上一点,且,与的延长线交于点P,若,则_4、如图,ADBC,连接AC,过点D作于E,过点B作于F(1)若,则ADE为_(2)写出线段BF、EF、DE三者间的数量关系_5、如图,在RtABC中,B=90,以顶点C为圆心、适当长为半径画弧,分别交AC、BC于点E、F,再分别以点E、F为圆心,以大于EF的长为半径画弧,两弧交于点P,作射线CP交

6、AB于点D若BD=4,AC=16,则ACD的面积是_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,ABAC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,DAC的平分线交DM于点F求证:AFCM2、如图,AC是BAE的平分线,点D是线段AC上的一点,CE,ABAD求证:BCDE3、如图,是边长为1的等边三角形,点,分别在,上,且,求的周长4、(1)如图,和都是等边三角形,且点,在一条直线上,连结和,直线,相交于点则线段与的数量关系为_与相交构成的锐角的度数为_(2)如图,点,不在同一条直线上,其它条件不变,上述的结论是否还成立(3)应用:如图,点,不在同一

7、条直线上,其它条件依然不变,此时恰好有设直线交于点,请把图形补全若,则_5、在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离请你用学过的数学知识按以下要求设计一测量方案(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB的距离(写出求解或推理过程,结果用字母表示)-参考答案-一、单选题1、D【解析】【分析】根据旋转的性质可得CDCE和DCE90,结合ACB90,ACBC,可证ACDBCE,依据全等三角形的性质即可得到CBEA45,再由ADBF可得等腰BEF,则可计算出BEF的度数【详解】解:由旋转性质可得: CDCE,DCE90ACB90,A

8、CBC,A45ACBDCBDCEDCB即ACDBCEACDBCECBEA45ADBF,BEBFBEFBFE 67.5故选:D【考点】本题考查了旋转的性质、全等三角形的判定与性质以及等腰三角形的性质,解题的关键是熟练运用旋转的性质找出相等的线段和角,并能准确判定三角形全等,从而利用全等三角形性质解决相应的问题2、C【解析】【分析】此题要分两种情况:当BD=PC时,计算出BP的长,进而可得运动时间,然后再求v;当BD=CQ时,计算出BP的长,进而可得运动时间,然后再求v【详解】当BD=PC时,点D为AB的中点,BD=AB=6厘米,BD=PC,BP=9-6=3(厘米),CQ =BP=3厘米,点Q运动

9、了33=1秒点P在线段BC上的运动速度是31=3(厘米秒),当BD=CQ时,BD=CQ=6厘米,点Q运动了63=2秒.BDPCQP,BP=CP=厘米,点P在线段BC上的运动速度是2=2.25(厘米秒),故选C.【考点】此题主要考查了全等三角形的性质,全等三角形的对应边相等,对应角相等,关键是要分情况讨论,不要漏解3、C【解析】【分析】根据全等三角形的判定方法即可判断.【详解】A. ABED,可用ASA判定ABCEDF;B. ACEF,可用AAS判定ABCEDF;C. ACEF,不能用AAA判定ABCEDF,故错误;D. BFDC,可用AAS判定ABCEDF;故选C.【考点】此题主要考查全等三角

10、形的判定,解题的关键是熟知全等三角形的判定方法.4、A【解析】【详解】解:根据SAS得:OABODC故选A.5、C【解析】【分析】根据题意可知,即可推断结论A;先证明,再证明即可证明结论B;连接OP,可证明可证明结论D;由此可知答案【详解】解:由题意可知,故选项A正确,不符合题意;在和中,在和中,故选项B正确,不符合题意;连接OP,在和中,点在的平分线上,故选项D正确,不符合题意;若,则,而根据题意不能证明,故不能证明,故选项C错误,符合题意;故选:C【考点】本题考查角平分线的判定,全等三角形的判定与性质,明确以某一半径画弧时,准确找到相等的线段是解题的关键6、D【解析】【分析】根据OB平分A

11、OC得AOB=BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果【详解】解:OB平分AOCAOB=BOC当DOEFOE时,可得以下结论:OD=OF,DE=EF,ODE=OFE,OED=OEFA答案中OD与OE不是DOEFOE的对应边,A不正确;B答案中OE与OF不是DOEFOE的对应边,B不正确;C答案中,ODE与OED不是DOEFOE的对应角,C不正确;D答案中,若ODE=OFE,在DOE和FOE中, DOEFOE(AAS)D答案正确故选:D【考点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键7、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的

12、性质可得,再根据三角形的面积公式即可得【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,故选:C【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键8、A【解析】【分析】A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出ADB=90,从而得出B正确;C、由梯形的性质得出ABCD,结合角的计算即可得出ABC=60,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出DAC=CAB,即D正确综上即可得出结论【详解】A、AD=DC,ACAD+DC=2CD,故A不正确;B、四边形ABCD是等腰梯形,ABC=BAD,在ABC

13、和BAD中,ABCBAD(SAS),BAC=ABD,ABCD,CDB=ABD,ABC+DCB=180,DC=CB,CDB=CBD=ABD=BAC,ACB=90,CDB=CBD=ABD=30,ABC=ABD+CBD=60,B正确,C、ABCD,DCA=CAB,AD=DC,DAC=DCA=CAB,C正确D、DABCBA,ADB=BCAACBC,ADB=BCA=90,DBAD,D正确;故选:A【考点】本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误本题属于中档题,稍显繁琐,但好在该题为选择题,只需由三角形的三边关系得出A不正确即可9、

14、C【解析】【分析】作AF平分BAD可根据证ABFADF,推出AB=AD,得出ABD为等腰三角形;可根据同弦所对的圆周角相等知点A、B、C、E共圆,可判出BE=CE=CD,根据三角形内角和等于180,可判出AE=AC;求出7=902,根据1=4=2推出47,即可得出BC不是ACE的平分线【详解】解:作AF平分BAD,BAD=3,ABD+3=90,BAF=3=DAF,ABF+BAF=90AFB=AFD=90,在BAF和DAF中ABFADF(ASA),AB=AD,故正确;AEAC,64790,5ADBABD90,12,5690CECD,4180561802(90)1,13,43,BECE,BECEC

15、D,正确;6+2+ACE=180,6=5=ADB=ABD=902ACE=18062=902,ACE=6,AE=CE,故正确5=2+7=902,7=902,BAD=4=2,47,故错误;故选C【考点】本题主要考查了全等三角形的判定和性质、同弦所对的圆周角相等、三角形内角和的相关知识,灵活运用所学知识是解题的关键10、D【解析】【分析】根据是a、c边的夹角,50的角是a、c边的夹角,然后根据两个三角形全等写出即可【详解】解:是a、c边的夹角,50的角是a、c边的夹角,又两个三角形全等,的度数是50故选:D【考点】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键全等三角形的对应角

16、相等,对应边相等对应边的对角是对应角,对应角的对边是对应边二、填空题1、【解析】【分析】根据题意作出图形,然后根据角平分线的性质得到,再根据三角形的面积和最小角割比的定义计算即可【详解】解:如图示,则,根据题意,作的角平分线交于点,过点,作交于点,过点,作交于点,则,则()故答案是:【考点】本题考查了三角形角平分线的性质和三角形的面积计算,熟悉相关性质是解题的关键2、或【解析】【分析】根据平行线的性质得到CEBC,根据余角的性质得到ACBE,根据全等三角形的性质得到CDAB,BCCE,等量代换即可得到结论【详解】解:ABEC,ABBC,CEBC,BDCE90,ACDE,ACDCDECDEE90

17、,ACBE,ACDE,ABCDCE(AAS),CDAB,BCCE,线段AB与线段CE的长度之比为5:8,CD:BC5:8,线段BD与线段DC的长度之比为3:5,故答案为:3:5【考点】本题考查了平行线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键3、【解析】【分析】作于,根据全等三角形性质得出CP=PM,DC=AM,设PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案【详解】解:作于,在和中,在和中,设,故答案为:【考点】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,主要考查学生的推理能力4、 30 【解析】【分析】(1

18、)根据直角三角形两锐角互余进行倒角即可求解;(2)根据ASA证明,即可求解【详解】解:(1),且ADBC,;故答案为:30;(2)在和中,故答案为:【考点】本题考查直角三角形两锐角互余、全等三角形的判定与性质等内容,根据已知条件进行倒角是解题的关键5、32【解析】【分析】过点D作DQAC,由作法可知CP是角平分线,根据角平分线的性质知DB=DQ=3,再由三角形的面积公式计算即可【详解】解:如图,过点D作DQAC于点Q,由作图知CP是ACB的平分线,B=90,BD=4,DB=DQ=4,AC=16,SACD=ACDQ=,故答案为32【考点】本题主要考查作图-基本作图,三角形面积,解题的关键是掌握角

19、平分线的尺规作图及角平分线的性质三、解答题1、证明见解析【解析】【分析】先根据等腰三角形的性质可得,再根据三角形的外角性质可得,然后根据角平分线的定义得,最后根据三角形全等的判定定理与性质即可得证【详解】,AF是的平分线,E是AC的中点,在和中,【考点】本题考查了等腰三角形的性质、角平分线的定义、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键2、见解析【解析】【分析】根据角平分线的性质证明BACDAE,即可得到结果;【详解】证明:AC是BAE的平分线,BACDAE,CE,ABADBACDAE(AAS),BCDE【考点】本题主要考查了三角形的全等判定及性质,准确利用角

20、平分线的进行计算是解题的关键3、2【解析】【分析】延长至点,使,连接,证明推出,进而得到,从而证明,推出EF=CP,由此求出的周长=AB+AC得到答案.【详解】解:如图,延长至点,使,连接是等边三角形,在和中,在和中,的周长.【考点】此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.4、(1)相等,;(2)成立,证明见解析;(3)见解析,4.【解析】【分析】(1)证明BCDACE,并运用三角形外角和定理和等边三角形的性质求解即可;(2)是第(1)问的变式,只是位置变化,结论保持不变;(3)根据AEC=30,判定AE是等边三角形CDE的高

21、,运用前面的结论,把条件集中到一个含有30角的直角三角形中求解即可.【详解】(1)相等;.理由如下:和都是等边三角形,在和中,又,.(2)成立;理由如下:证明:和都是等边三角形,在和中,又,.(3)补全图形(如图),CDE是等边三角形,DEC=60,AEC=30,AEC=AED,EQDQ,DQP=90,根据(1)知,BDC=AEC=30,PQ=2,DP=4.故答案为:4.【考点】本题是一道猜想证明题,以两线段之间的大小关系为基础,考查了等边三角形的性质,三角形的全等,直角三角形的性质,证明两个手拉手模型三角形全等是解题的关键.5、(1)见解析;(2)见解析;(3)设DC=m,则AB= m【解析】【分析】本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全等的条件,方案具有可操作性,需要测量的线段在陆地一侧可实施,就可以达到目的【详解】解:(1)见图:(2)在湖岸上选一点O,连接BO并延长到C使BO=OC,连接AO并延长到点D使OD=AO,连接CD,则AB= CD测量DC的长度即为AB的长度;(3)设DC=mBO=CO,AOB=COD,AO=DOAOBCOD(SAS)AB=CD=m【考点】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1