收藏 分享(赏)

2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx

上传人:a**** 文档编号:695856 上传时间:2025-12-13 格式:DOCX 页数:22 大小:339.31KB
下载 相关 举报
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第1页
第1页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第2页
第2页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第3页
第3页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第4页
第4页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第5页
第5页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第6页
第6页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第7页
第7页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第8页
第8页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第9页
第9页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第10页
第10页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第11页
第11页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第12页
第12页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第13页
第13页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第14页
第14页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第15页
第15页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第16页
第16页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第17页
第17页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第18页
第18页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第19页
第19页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第20页
第20页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第21页
第21页 / 共22页
2022年人教版九年级数学上册第二十二章二次函数专项测评试卷.docx_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数已知当商家将此种商品销

2、售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()Ay(x60)2+1825By2(x60)2+1850Cy(x65)2+1900Dy2(x65)2+20002、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD3、已知抛物线yax2+bx+c(a0)如图所示,那么a、b、c的取值范围是()Aa0、b0、c0Ba0、b0、c0Ca0、b0、c0Da0、b0、c04、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹

3、所在高度最高的是( )A第秒B第秒C第秒D第秒5、把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是()ABCD6、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y随x的增大而减小,则a的取值范围是()ABCD7、已知抛物线经过点,且该抛物线的对称轴经过点A,则该抛物线的解析式为()ABCD8、下列函数中,二次函数是()Ay4x+5Byx(2x3)Cyax2+bx+cD9、下列关于二次函数的说法,正确的是()A对称轴是直线B当时有最小值C顶点坐标是D当时,y随x的增大而减少10、如图,正方形边长为4,、分别是、上的点,且设、两点间的距离为,四边

4、形的面积为,则与的函数图象可能是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将抛物线向上平移()个单位长度,k,平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1,n),则下列结论正确的是_(写出所有正确结论的序号) 0p1; 1p1; qn; q2kk2、对于任意实数,抛物线与轴都有公共点则的取值范围是_3、已知二次函数,如果随的增大而增大,那么的取值范围是_4、已知二次函数,当分别取时,函数值相等,则当取时,函数值为_5、定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:当时,函数图象的对称轴是轴;当时,函数图象过原点;当时

5、,函数有最小值;如果,当时,随的增大而减小,其中所有正确结论的序号是_三、解答题(5小题,每小题10分,共计50分)1、2022年冬奥会在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件)(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获

6、得的利润最大,最大利润为多少元?2、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?3、若二次函数图像经过,两点,求、的值.4、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);5、已知:二次

7、函数yx21(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象-参考答案-一、单选题1、D【解析】【分析】设二次函数的解析式为:yax2bxc,根据题意列方程组即可得到结论【详解】解:设二次函数的解析式为:yax2+bx+c,当x55,y1800,当x75,y1800,当x80时,y1550, ,解得a2,b260,c6450,y与x的函数关系式是y2x2+260x64502(x65)2+2000,故选:D【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键2、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二

8、次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C

9、:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上3、D【解析】【分析】根据开口方向可判断a的符号,根据对称轴可判断b的符号,根据图像与y轴的交点可判断c的符号.【详解】解:由图象开口可知:a0;由图象与y轴交点可知:c0;由对称轴可知:0,b0;a0,b0,c0,故选:D【考点

10、】本题考查二次函数的图像与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中考常考题型4、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.5、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可【详解】解:抛物线的顶点坐标为(2,1),向左平移1个单位,

11、再向上平移2个单位后的顶点坐标是(1,3)所得抛物线解析式是故选:A【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便6、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键7、D【解析】【分析】根据抛物线图象性质可得A点是抛物线顶点坐标,再根据顶点坐标公式进行求解即

12、可.【详解】抛物线经过点,且该抛物线的对称轴经过点A,函数的顶点坐标是,解得,经检验均符合该抛物线的解析式为.故选D.【考点】本题主要考查抛物线的性质和顶点坐标公式,解决本题的关键是要熟练掌握抛物线的性质和顶点坐标公式.8、B【解析】【分析】根据二次函数的定义判断即可【详解】A、y4x+5是一次函数,故选项A不合题意;B、yx(2x3)是二次函数,故选项B符合题意;C、当a0时,yax2+bx+c不是二次函数,故选项C不合题意;D、不是二次函数,故选项D不合题意故选:B【考点】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键9、B【解析】【分析】根据二次函数的性质对各选项分析

13、判断后利用排除法求解【详解】解:由二次函数可知对称轴是直线,故选项A错误,不符合题意;由二次函数可知开口向上,当时有最小值,故选项B正确,符合题意;由二次函数可知顶点坐标为(3,-5),故选项C错误,不符合题意;由二次函数可知顶点坐标为(3,-5),对称轴是直线,当x3时,y随x的增大而减小,故选项D错误,不符合题意;故选:B【考点】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性10、A【解析】【分析】本题考查了动点的函数图象,先判定图中的四个小直角三角形全等,再用大正方形的面积减去四个直角三角形的面积,得函数y的表达式,结合选项的图象可得答案【详解】解:正

14、方形ABCD边长为4,AE=BF=CG=DHAH=BE=CF=DG,A=B=C=DAEHBFECGFDHGy=44-x(4-x)4=16-8x+2x2=2(x-2)2+8y是x的二次函数,函数的顶点坐标为(2,8),开口向上,从4个选项来看,开口向上的只有A和B,C和D图象开口向下,不符合题意;但是B的顶点在x轴上,故B不符合题意,只有A符合题意故选:A【考点】本题考查了动点问题的函数图象,正确地写出函数解析式并数形结合分析是解题的关键二、填空题1、#【解析】【分析】先画出函数图像,判断出当时抛物线和反比例函数图象上的点的纵坐标的关系,确定抛物线右支与反比例函数图象的交点个数,再利用抛物线的对

15、称性与反比例函数的图象与性质直接判断即可【详解】解: 抛物线,该抛物线对称轴为,顶点坐标为(1,),将该抛物线向上平移()个单位长度,则顶点坐标为(1,),当时,反比例函数图象上点的坐标为(1,),如图所示,抛物线平移后的顶点纵坐标即为m,反比例函数上横坐标为1的点的纵坐标即为s,m-s=,k,抛物线的右支与反比例函数图象只有一个交点,且该交点横坐标大于1;平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1,n),点M为抛物线右支与反比例函数图象的交点,点P为抛物线左支与反比例函数图象的交点,由于反比例函数的图像在第一象限内y随x的增大而减小,且抛物线关于直线对称1p1;q2kk正确;

16、故答案为:【考点】本题考查了抛物线与反比例函数的图像与性质,解题关键是弄清楚这两个交点分别位于抛物线的左支和右支上,再利用抛物线的轴对称性和反比例函数图像的增减性进行判断2、【解析】【分析】由题意易得,则有,然后设,由无论a取何值时,抛物线与轴都有公共点可进行求解【详解】解:由抛物线与轴都有公共点可得:,即,设,则,要使对于任意实数,抛物线与轴都有公共点,则需满足小于等于的最小值即可,即的最小值为,;故答案为【考点】本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键3、【解析】【分析】由于抛物线y=2x2-1的对称轴是y轴,所以当x0时,y随x的增大而增大【详解】解:抛物线y=2x

17、2-1中a=20,二次函数图象开口向上,且对称轴是y轴,当x0时,y随x的增大而增大故答案为:【考点】本题考查了抛物线y=ax2+b的性质:图象是一条抛物线;开口方向与a有关;对称轴是y轴;顶点(0,b)4、2020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得当x取2x1+2x2时,函数的值【详解】解:二次函数y=2x2+2020,当x分别取x1,x2(x1x2)时,函数值相等,2x12+2020=2x22+2020,x1=-x2,2x1+2x2=2(x1+x2)=0,当

18、x=2x1+2x2时,y=20+2020=0+2020=2020,故答案为:2020【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答5、【解析】【分析】利用二次函数的性质根据特征数,以及的取值,逐一代入函数关系式,然判断后即可确定正确的答案【详解】解:当时,把代入,可得特征数为,函数解析式为,函数图象的对称轴是轴,故正确;当时,把代入,可得特征数为,函数解析式为,当时,函数图象过原点,故正确;函数 当时,函数图像开口向上,有最小值,故正确;当时,函数图像开口向下,对称轴为:时,可能在函数对称轴的左侧,也可能在对称轴的右侧,故不能判断其

19、增减性,故错误;综上所述,正确的是,故答案是:【考点】本题考查了二次函数的图像与性质,二次函数的对称轴等知识点,牢记二次函数的基本性质是解题的关键三、解答题1、(1);(2)当销售单价为56元时,每天所获得的利润最大,最大利润为1152元【解析】【分析】(1)根据“销售单价每降低1元,则每天可多售出2件”列函数关系式;(2)根据总利润单件利润销售量列出函数关系式,然后利用二次函数的性质分析其最值【详解】解:(1)由题意可得:,整理,得:,每天的销售量y(件)与销售单价x(元)之间的函数关系式为;(2)设销售所得利润为w,由题意可得:,整理,得:,当时,w取最大值为1152,当销售单价为56元时

20、,销售这款文化衫每天所获得的利润最大,最大利润为1152元【考点】此题考查二次函数的应用销售问题,涉及运算能力及一次函数应用,熟练掌握相关知识是解题的关键2、(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【解析】【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案【详解】(1)由题意列方程得:(x40-30) (300-10x)3360 解得:x12,x218要尽可能减少库存,x218不合题意,故舍去T恤的销售单价应提高2元;(2)设利润为M元,由题意可得: M(x40

21、-30)(300-10x)-10x2200x3000 当x10时,M最大值4000元销售单价:401050元当服装店将销售单价50元时,得到最大利润是4000元【考点】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解3、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得, 解得: b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.4、(1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为ya

22、x2+bx+c,再将点(0,1),(1,2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)23,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;

23、当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解5、 (1)抛物线的开口方向向上,对称轴为y轴,顶点坐标为(0,1)(2)图像见解析【解析】【分析】(1)根据二次函数y=a(x-h)2+k,当a0时开口向上;顶点式可直接求得其顶点坐标为(h,k)及对称轴x=h;(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象(1)解:(1)二次函数yx21,抛物线的开口方向向上,顶点坐标为(0,1),对称轴为y轴;(2)解:在yx21中,令y0可得x21=0解得x1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x0可得y1,所以抛物线与y轴的交点坐标为(0,-1);又顶点坐标为(0,1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x-2-1012yx2130-103描点可画出其图象如图所示:【考点】本题考察了二次函数的开口方向、对称轴以及顶点坐标以及二次函数抛物线的画法解题的关键是把二次函数的一般式化为顶点式描点画图的时候找到关键的几个点,如:与x轴的交点与y轴的交点以及顶点的坐标

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1