1、人教版九年级数学上册第二十三章旋转定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AOB中,OA4,OB6,AB2,将AOB绕原点O旋转90,则旋转后点A的对应点A的坐标是()A(4,2)或
2、(4,2)B(2,4)或(2,4)C(2,2)或(2,2)D(2,2)或(2,2)2、将绕点旋转得到,则下列作图正确的是( )ABCD3、如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60得到线段AC若点C的坐标为,则m的值为()ABCD4、以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是()ABCD5、有下列说法:平行四边形具有四边形的所有性质:平行四边形是中心对称图形:平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形其中正确说法的序号是()ABCD6、如图,菱形对角
3、线交点与坐标原点重合,点,则点的坐标为()ABCD7、下列图形中既是轴对称图形,也是中心对称图形的是()ABCD8、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接下列结论一定正确的是()ABCD9、如图,在中,将绕点逆时针旋转到的位置,使得,则的度数是()ABCD10、如图,将RtABC绕直角顶点C顺时针旋转90,得到ABC,连接AA,若1=25,则BAA的度数是()A70B65C60D55第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在44的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是
4、一个轴对称图形,这样的移法共有_种2、下列4种图案中,是中心对称图形的有_个3、如图,已知:,以AB为边作正方形ABCD,使P、D两点落在直线AB的两侧当时,则PD的长为_4、已知,正六边形ABCDEF在直角坐标系内的位置如图所示,A(2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60,经过2022次翻转之后,点B的坐标是_5、如图,将ABC绕点A逆时针旋转得到ADE,点C和点E是对应点,若CAE=90,AB=1,则BD=_三、解答题(5小题,每小题10分,共计50分)1、在RtABC中,ABC90,ACB30,将ABC绕点C顺时针旋转一定的角度得到DEC
5、,点A、B的对应点分别是D、E(1)当点E恰好在AC上时,如图1,求ADE的大小;(2)若60时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形2、【模型建立】(1)如图1,在正方形中,点E是对角线上一点,连接,求证:【模型应用】(2)如图2,在正方形中,点E是对角线上一点,连接,将绕点E逆时针旋转,交的延长线于点F,连接当时,求的长【模型迁移】(3)如图3,在菱形中,点E是对角线上一点,连接,将绕点E逆时针旋转,交的延长线于点F,连接,与交于点G当时,判断线段与的数量关系,并说明理由3、在数学活动课上,王老师要求学生将图1所示的33正方形方格纸,剪掉其中两个方格,使之成为轴对称图
6、形规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33的正方形方格画一种,例图除外)4、如图,在由边长为1个单位长度的小正方形组成的网格中,ABC的顶点均为格点(网格线的交点)(1)将ABC向上平移6个单位,再向右平移2个单位,得到,请画出(2)以边AC的中点O为旋转中心,将ABC按逆时针方向旋转180,得到,请画出5、(1)方法感悟:如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足EAF45,连接EF,求证:DEBFEF感悟解题方法,并完成下列填空:
7、将ADE绕点A顺时针旋转90得到ABG,此时AB与AD重合,由旋转可得:ABAD,BGDE,12,ABGD90,ABGABF9090180因此,点G,B,H在同一条直线上EAF45,23BADEAF904545,1345即GAF_又AGAE,AFAF,_EF故DEBFEF(2)方法迁移:如图2,将RtABC沿斜边翻折得到ADC,点E,F分别为DC,BC边上的点,且试猜想DE,BF,EF之间有何数量关系,并证明你的猜想(3)问题拓展:如图3,在四边形ABCD中,ABAD,E,F分别为DC,BC上的点,满足,试猜想当B,D满足什么关系时,可使得DEBFEF?请说明理由-参考答案-一、单选题1、C【
8、解析】【分析】先求出点A的坐标,再根据旋转变换中,坐标的变换特征求解;或根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A的坐标【详解】过点A作于点C在RtAOC中, 在RtABC中, OA4,OB6,AB2,点A的坐标是根据题意画出图形旋转后的位置,如图,将AOB绕原点O顺时针旋转90时,点A的对应点A的坐标为;将AOB绕原点O逆时针旋转90时,点A的对应点A的坐标为故选:C【考点】本题考查了解直角三角形、旋转中点的坐标变换特征及旋转的性质(a,b)绕原点顺时针旋转90得到的坐标为(b,-a),绕原点逆时针旋转90得到的坐标为(b,a)2、D【解析】【分析】把一个图形绕某一点O转动一个
9、角度的图形变换叫做旋转.【详解】解:观察选项中的图形,只有D选项为ABO绕O点旋转了180.【考点】本题考察了旋转的定义.3、C【解析】【分析】过C作CDx轴于D,CEy轴于E,根据将线段AB绕点A按逆时针方向旋转60得到线段AC,可得ABC是等边三角形,又A(0,2),C(m,3),即得,可得,从而,即可解得【详解】解:过C作CDx轴于D,CEy轴于E,如图所示:CDx轴,CEy轴,CDO=CEO=DOE90,四边形EODC是矩形,将线段AB绕点A按逆时针方向旋转60得到线段AC,ABAC,BAC60,ABC是等边三角形,ABACBC,A(0,2),C(m,3),CEmOD,CD3,OA2,
10、AEOEOACDOA1,在RtBCD中,在RtAOB中,OBBDODm,化简变形得:3m422m2250,解得:或(舍去),故C正确故选:C【考点】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度4、A【解析】【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形中心对称图形:在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形【详解】A.既是轴对称图形又是中心对称图形,故该选项符合题意;B.是轴对称图形,但不是中心对称图形
11、,故该选项不符合题意;C.不是轴对称图形,但是中心对称图形,故该选项不符合题意;D.既不是轴对称图形也不是中心对称图形,故该选项不符合题意故选A【考点】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键5、D【解析】【分析】根据平行四边形的性质、中心对称图形的定义和全等三角形的判定进行逐一判定即可【详解】解:平行四边形是四边形的一种,平行四边形具有四边形的所有性质,故正确:平行四边形绕其对角线的交点旋转180度能够与自身重合,平行四边形是中心对称图
12、形,故正确:四边形ABCD是平行四边形,AD=BC,CD=AB,ADC=CBAADCCBA(SAS)同理可以证明ABDCDB平行四边形的任一条对角线可把平行四边形分成两个全等的三角形,故正确;四边形ABCD是平行四边形,OA=OC,OD=OB,平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形,故正确故选D【考点】本题主要考查了中心对称图形的定义,平行四边形的性质,全等三角形的判定,三角形中线把面积分成相同的两部分等等,解题的关键在于能够熟练掌握相关知识进行求解6、B【解析】【分析】根据菱形的中心对称性,A、C坐标关于原点对称,利用横反纵也反的口诀求解即可【详解】菱形是中心对称图形,
13、且对称中心为原点,A、C坐标关于原点对称,C的坐标为,故选C【考点】本题考查了菱形的中心对称性质,原点对称,熟练掌握菱形的性质,关于原点对称点的坐标特点是解题的关键7、B【解析】【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意故选:B【考点】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形
14、是要寻找对称中心,旋转180度后与原图重合8、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,ACD=BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据EBC=EBC+ABC=A+ABC=-ACB判断选项B不一定正确即可【详解】解:绕点顺时针旋转得到,AC=CD,BC=EC,ACD=BCE,A=CDA=;EBC=BEC=,选项A、C不一定正确,A =EBC,选项D正确EBC=EBC+ABC=A+ABC=-ACB不一定等于,选项B不一定正确;故选D【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转
15、前、后的图形全等也考查了等腰三角形的性质9、C【解析】【分析】根据旋转的性质得AC=AC,BAB=CAC,再根据等腰三角形的性质得ACC=ACC,然后根据平行线的性质由CCAB得ACC=CAB=70,则ACC=ACC=70,再根据三角形内角和计算出CAC=40,所以BAB=40【详解】绕点逆时针旋转到的位置,故选C.【考点】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角也考查了平行线的性质10、B【解析】【分析】根据旋转的性质可得AC=AC,然后判断出ACA是等腰直角三角形,根据等腰直角三角形的性质可得CAA=45,再根据三角形的
16、内角和定理可得结果【详解】RtABC绕直角顶点C顺时针旋转90得到ABC,AC=AC,ACA是等腰直角三角形,CAA=45,CAB=20=BACBAA=180-70-45=65,故选:B【考点】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键二、填空题1、13【解析】【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案【详解】如图所示:故一共有13画法.2、2【解析】【分析】根据中心对称图形的概念即可求解.【详解】第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题
17、意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【考点】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、【解析】【分析】由于ADAB,DAB90,则把APD绕点A顺时针旋转90得到AFB,AD与AB重合,PA旋转到AF的位置,根据旋转的性质得到APAF,PAF90,PDFB,则APF为等腰直角三角形,得到APF45,即有BPFAPB+APF45+4590,然后在RtFBP中,根据勾股定理可计算出FB的长,即可得到PD的长【详解】解:ADAB,DAB90,把APD绕点A顺时针旋转90得到AF
18、B,AD与AB重合,PA旋转到FA的位置,如图,APAF,PAF90,PDFB,APF为等腰直角三角形,APF45, ,BPFAPB+APF45+4590,在RtFBP中,PB4,由勾股定理得,故答案为:【考点】本题考查了正方形的性质,旋转的性质,等腰直角三角形的判定和性质以及勾股定理正确的作出辅助线是解题关键4、【解析】【分析】根据正六边形的特点,每6次翻转为一个循环组,用2022除以6的结果判断出点B的位置,求出前进的距离【详解】解:正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60,每6次翻转为一个循环组循环,经过2022次翻转完成第337循环组,点B在开始时点B的位置,
19、翻转前进的距离=22022=4044,所以,点B的坐标为,故答案为:【考点】本题考查点的坐标,涉及坐标与图形变化-旋转,正六边形的性质,确定出翻转最后点B所在的位置是关键5、【解析】【详解】将ABC绕点A逆时针旋转的到ADE,点C和点E是对应点,AB=AD=1,BAD=CAE=90,BD=.故答案为:.三、解答题1、(1)ADE15;(2)见解析【解析】【分析】(1)根据旋转的性质可得CACD,ECDBCA30,DECABC90,根据等边对等角即可求出CADCDA75,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BFAC,然后根据30所对的直角
20、边是斜边的一半即可求出ABAC,从而得出 BFAB,然后证出ACD和BCE为等边三角形,再利用HL证出CFDABC,证出DFBE,即可证出结论【详解】(1)解:ABC绕点C顺时针旋转得到DEC,点E恰好在AC上,CACD,ECDBCA30,DECABC90,CADCDA(18030)75,ADE90CAD15;(2)证明:如图2,连接AD点F是边AC中点,BFAF=CFAC,ACB30,ABAC,BF=CFAB,ABC绕点C顺时针旋转60得到DEC,BCEACD60,CBCE,DEAB,DC=ACDEBF,ACD和BCE为等边三角形,BECB,点F为ACD的边AC的中点,DFAC,在RtCFD
21、和RtABC中RtCFDRtABC,DFBC,DFBE,而BFDE,四边形BEDF是平行四边形【考点】此题考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定,掌握旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定是解决此题的关键2、(1)证明见解析;(2);(3),理由见解析【解析】【分析】(1)利用SAS证明即可;(2)先证,再利用勾股定理求解;(3)先证,再利用等边三角形的判定性质证明即可【详解】(1)证明:如图1中,四边形是正方形,在和中,;(2)解:如图2
22、中,设交于点J由(1)知,EF是绕点E逆时针旋转得到,在中,;(3)解:结论:理由:如图3中,四边形是菱形,在和中,),是绕点E逆时针旋转得到的,是等边三角形,【考点】本题考查了正方形的性质,等边三角形的判定和性质,图形的旋转变换,全等三角形的判定和性质,勾股定理,正确理解图形的相关性质是解本题的关键3、见解析.【解析】【分析】根据轴对称图形和旋转对称图形的概念作图即可得【详解】解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:【考点】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念4、 (1)见解析(2)见解析【解析】【分析】(1)根据平移的方式确定出点A
23、1,B1,C1的位置,再顺次连接即可得到;(2)根据旋转可得出确定出点A2,B2,C2的位置,再顺次连接即可得到(1)如图,即为所作;(2)如图,即为所作;【考点】本题考查作图-旋转变换与平移变换,解题的关键是理解题意,灵活运用所学知识解决问题5、(1)EAF;EAF;GF;(2)EFDEBF,见解析;(3)BD180,见解析【解析】【分析】(1)根据图形和推理过程填空即可;(2)根据题意,分别证明,即可得出结论(3)根据角之间关系,只要满足B+D180时,就可以得出三角形全等,利用全等三角形的性质即可得出答案【详解】(1)解:将ADE绕点A顺时针旋转90得到ABG,此时AB与AD重合,由旋转
24、可得:ABAD,BGDE,12,ABGD90,ABG+ABF90+90180,因此,点G,B,F在同一条直线上,EAF45,2+3BADEAF904545,1+345,即GAFEAF,又AGAE,AFAF,GAFEAF(SAS),GFEF,故DE+BFEF;故答案为:EAF,EAF,GF(2)EFDEBF,理由如下:如图,延长CF,作41将RtABC沿斜边翻折得到RtADC,点E,F分别为DC,BC边上的点,且,1235,231541,2345,GAFFAE在AGB和AED中,AGAE,BGDE在AGF和AEF中,GFEFDEBFEF(3)当B与D满足BD180时,可使得DEBFEF如图,延长CF,作21ABCD180,ABCABG180,DABG在AGB和AED中, BGDE,AGAE,EAFGAF在AGF和AEF中, GFEF,DEBFEF故当B与D满足BD180时,可使得DEBFEF【考点】本题主要考查了正方形的性质,全等三角形的判定和性质以及旋转变换性质等知识,根据题意作出与已知相等的角,利用三角形全等是解决问题的关键