收藏 分享(赏)

《学案导学与随堂笔记》苏教版数学选修2-1全套备课精选单元测试:第2章 圆锥曲线与方程章末总结.doc

上传人:高**** 文档编号:695225 上传时间:2024-05-30 格式:DOC 页数:6 大小:301.50KB
下载 相关 举报
《学案导学与随堂笔记》苏教版数学选修2-1全套备课精选单元测试:第2章 圆锥曲线与方程章末总结.doc_第1页
第1页 / 共6页
《学案导学与随堂笔记》苏教版数学选修2-1全套备课精选单元测试:第2章 圆锥曲线与方程章末总结.doc_第2页
第2页 / 共6页
《学案导学与随堂笔记》苏教版数学选修2-1全套备课精选单元测试:第2章 圆锥曲线与方程章末总结.doc_第3页
第3页 / 共6页
《学案导学与随堂笔记》苏教版数学选修2-1全套备课精选单元测试:第2章 圆锥曲线与方程章末总结.doc_第4页
第4页 / 共6页
《学案导学与随堂笔记》苏教版数学选修2-1全套备课精选单元测试:第2章 圆锥曲线与方程章末总结.doc_第5页
第5页 / 共6页
《学案导学与随堂笔记》苏教版数学选修2-1全套备课精选单元测试:第2章 圆锥曲线与方程章末总结.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且F1PF260,SPF1F212,求双曲线的标准方程知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同

2、的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y22x于M(x1,y1),N(x2,y2)两点(1)求x1x2与y1y2的值;(2)求证:OMON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(

3、1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x(t),y(t),再通过一些条件消掉t就间接

4、地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程例3设点A、B是抛物线y24px (p0)上除原点O以外的两个动点,已知OAOB,OMAB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四圆锥曲线中的定点、定值问题圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值化解这类问题难点的

5、关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量例4若直线l:ykxm与椭圆1相交于A、B两点(A、B不是左、右顶点),A2为椭圆的右顶点且AA2BA2,求证:直线l过定点知识点五圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略:(1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解(2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值例5已知A(4,0),B(2,2)是椭圆1内的两定点,点M

6、是椭圆上的动点,求MAMB的最值例6已知F1、F2为椭圆x21的上、下两个焦点,AB是过焦点F1的一条动弦,求ABF2面积的最大值章末总结重点解读例1解如图所示,设双曲线方程为1 (a0,b0)e2,c2a.由双曲线的定义,得|PF1PF2|2ac,在PF1F2中,由余弦定理,得:F1FPFPF2PF1PF2cos 60(PF1PF2)22PF1PF2(1cos 60),即4c2c2PF1PF2.又SPF1F212,PF1PF2sin 6012,即PF1PF248.由,得c216,c4,则a2,b2c2a212,所求的双曲线方程为1.例2(1)解过点P(2,0)且斜率为k的直线方程为:yk(x

7、2)把yk(x2)代入y22x,消去y得k2x2(4k22)x4k20,由于直线与抛物线交于不同两点,故k20且(4k22)216k416k240,x1x24,x1x24,M、N两点在抛物线上,yy4x1x216,而y1y20.当m12k时,l的方程为yk(x2),直线过定点(2,0),与已知矛盾当m2时,l的方程为yk,直线过定点,直线l过定点例5解因为A(4,0)是椭圆的右焦点,设A为椭圆的左焦点,则A(4,0),由椭圆定义知MAMA10.如图所示,则MAMBMAMAMBMA10MBMA10AB.当点M在BA的延长线上时取等号所以当M为射线BA与椭圆的交点时,(MAMB)max10AB102.又如图所示,MAMBMAMAMAMB10(MAMB)10AB,当M在AB的延长线上时取等号所以当M为射线AB与椭圆的交点时,(MAMB)min10AB102.例6解由题意,F1F22.设直线AB方程为ykx1,代入椭圆方程2x2y22,得(k22)x22kx10,则xAxB,xAxB,|xAxB|.SABF2F1F2|xAxB|222.当,即k0时,SABF2有最大面积为.- 6 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3