1、课后素养落实(二十五)等差数列前n项和的性质 (建议用时:40分钟)一、选择题1数列an为等差数列,它的前n项和为Sn,若Sn(n1)2,则的值是()A2B1C0D1B等差数列前n项和Sn的形式为Snan2bn,12已知等差数列an的前n项和为Sn,若S1010,S2060,则S40()A110B150C210D280D等差数列an前n项和为Sn,S10,S20S10,S30S20,S40S30也成等差数列,故(S30S20)S102(S20S10),S30150又(S20S10)(S40S30)2(S30S20),S40280故选D3在等差数列an中,a12 021,其前n项和为Sn,若2,
2、则S2 021的值等于()A2 021B2 021C2 019D2 019A由题意知,数列为等差数列,其公差为1,所以(2 0211)12 0212 0201所以S2 0212 0214两个等差数列an和bn,其前n项和分别为Sn,Tn,且,则()ABCDD因为等差数列an和bn,所以,又S2121a11,T2121b11,故令n21有,即,所以,故选D5等于()ABCDC通项an,原式二、填空题6已知在等差数列an中,Sn为其前n项和,已知S39,a4a5a67,则S9S6_5S3,S6S3,S9S6成等差数列,而S39,S6S3a4a5a67,S9S657在数列an中,a1,an1an(n
3、N*),则a2 019的值为_1因为an1an(nN*),所以an1an,a2a11,a3a2,a2 019a2 018,各式相加,可得a2 019a11,a2 0191,所以a2 0191,故答案为18数列an满足a13,且对于任意的nN*都有an1ann2,则a39_820因为an1ann2,所以a2a13,a3a24,a4a35,anan1n1(n2),上面n1个式子左右两边分别相加得ana1,即an,所以a39820三、解答题9已知两个等差数列an与bn的前n(n1)项和分别是Sn和Tn,且SnTn(2n1)(3n2),求的值解法一:法二:数列an,bn均为等差数列,设SnA1n2B1
4、n,TnA2n2B2n又,令Sntn(2n1),Tntn(3n2),t0,且tRanSnSn1tn(2n1)t(n1)(2n21)tn(2n1)t(n1)(2n1)t(4n1)(n2),bnTnTn1tn(3n2)t(n1)(3n5)t(6n5)(n2)(n2),10等差数列an的前n项和为Sn,已知a110,a2为整数,且SnS4(1)求an的通项公式;(2)设bn,求数列bn的前n项和Tn解(1)由a110,a2为整数知,等差数列an的公差d为整数因为SnS4,故a40,a50,于是103d0,104d0解得d因此d3所以数列an的通项公式为an133n(2)bn于是Tnb1b2bn11(
5、多选题)已知数列an为等差数列,其前n项和为Sn,若SnS13n(nN*且n13),有以下结论,则正确的结论为()AS130Ba70Can为递增数列Da130AB对B,由题意,SnS13n,令n7有S7S6S7S60a70,故B正确对A,S1313a70故A正确对C,当an0时满足SnS13n0,故an为递增数列不一定正确故C错误对D,由A,B项,可设当an7n时满足SnS13n,但a136故D错误故AB正确12已知等差数列an的前n项和为Sn,S440,Sn210,Sn4130,则n()A12B14C16D18BSnSn4anan1an2an380,S4a1a2a3a440,所以4(a1an
6、)120,a1an30,由Sn210,得n1413设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项的值是_,项数是_117设等差数列an的项数为2n1,S奇a1a3a2n1(n1)an1,S偶a2a4a6a2nnan1,所以,解得n3,所以项数为2n17,S奇S偶an1,即a4443311为所求中间项14若等差数列an满足a7a8a90,a7a100,a7a10a8a90,a90当n8时,数列an的前n项和最大15设Sn为等差数列an的前n项和,且a215,S565(1)求数列an的通项公式;(2)设数列bn的前n项和为Tn,且TnSn10,求数列|bn|的前n项和Rn解(1)设等差数列an的公差为d,则解得ana1(n1)d172(n1)2n19(2)由(1)得Snn218n,Tnn218n10当n1时,b1T17;当n2且nN*时,bnTnTn12n19经验证b117,bn当1n9时,bn0;当n10时,bn0当1n9时,Rn|b1|b2|bn|b1b2bnn218n10;当n10时,Rn|b1|b2|bn|b1b2b9(b10b11bn)2(b1b2b9)(b1b2b9b10b11bn)Tn2T9n218n152,综上所述:Rn