1、京改版八年级数学上册第十章分式必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是()ABCD2、下列运算正确的是()ABCD3、若分式 的值为0,则x 的值是()A2B0C-2D-
2、54、解分式方程时,去分母化为一元一次方程,正确的是()Ax+23Bx23Cx23(2x1)Dx+23(2x1)5、如果关于x的方程有正整数解,且关于x的不等式组的解集为,则符合条件的所有整数a之和为()A4B3C2D16、化简的结果是()ABCD7、一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度如果设船在静水中的速度为x千米/时,可列出的方程是()ABCD8、关于x的分式方程1的解为正数,则字母a的取值范围为()Aa1Ba1Ca1Da19、如果,那么代数式的值是()ABC1D310、解分式方程2,去分母得()A12(x1)3B12(x1)
3、3C12x23D12x+23第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、化简的结果是_2、若关于的分式方程的解为正数,则的取值范围是_3、已知,则的值为_4、若代数式有意义,则实数的取值范围是_5、如果分式值为零,那么x_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中x取不等式组的适当整数解2、为保障蔬菜基地种植用水,需要修建灌溉水渠(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米
4、,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工甲施工队按(1)中增加人员后的修建速度进行施工乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同求乙施工队原来每天修建灌溉水渠多少米?3、徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?4、解方程:(1)(2)5、阅读理解,并解决问题.分式方程的增根:解分式方程时可能会产生增根,原因是什么呢?
5、事实上,解分式方程时产生增根,主要是在去分母这一步造成的.根据等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.但是,当等式两边同乘0时,就会出现的特殊情况.因此,解方程时,方程左右两边不能同乘0.而去分母时会在方程左右两边同乘公分母,此时无法知道所乘的公分母的值是否为0,于是,未知数的取值范围可能就扩大了.如果去分母后得到的整式方程的根使所乘的公分母值为0,此根即为增根,增根是整式方程的根,但不是原分式方程的根.所以解分式方程必须验根.请根据阅读材料解决问题:(1)若解分式方程时产生了增根,这个增根是 ;(2)小明认为解分式方程时,不会产生增根,请你直接写出原因;(3
6、)解方程-参考答案-一、单选题1、D【解析】【分析】根据分式的加减乘除的运算法则进行计算即可得出答案【详解】解:A. ,计算错误,不符合题意;B. ,计算错误,不符合题意;C. ,计算错误,不符合题意;D. ,计算正确,符合题意;故选:D【考点】本题考查了分式的加减乘除的运算,熟练掌握运算法则是解题的关键2、D【解析】【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则、分式运算法则分别化简得即可【详解】解:A,故此选项错误,不符合题意;B,故此选项错误,不符合题意;C,故此选项错误,不符合题意;D,故此选项正确,符合题意故选:D【考点】本题考查了整式的运算和分式的运算,解题关键是熟记相关
7、运算法则,准确进行计算,注意运算顺序3、A【解析】【分析】根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值【详解】解: 根据题意得 :x-2=0,且x+50,解得 x=2故选:A【考点】本题考查了分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零4、C【解析】【分析】最简公分母是2x1,方程两边都乘以(2x1),即可把分式方程便可转化成一元一次方程【详解】方程两边都乘以(2x1),得x23(2x1),故选C【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根5、C【解析】【分析】分式方程去分母转
8、化为整式方程,表示出整式方程的解,由分式方程的解为正整数求出的范围,再由不等式组的解集确定出的范围,进而求出的具体范围,确定出整数的值,求出之和即可【详解】解:分式方程去分母得:,解得:,由分式方程的解为正整数,得到,即,不等式,整理得:,由不等式的解集为,得到,即,的范围是,且是整数,的值为,0, 2,3,4,把代入,得:,即,不符合题意;把代入,得:,即,符合题意;把代入,得:,即,不符合题意;把代入,得:,即,不符合题意;把代入,得:,即,符合题意;把代入,得:,即,不符合题意;符合条件的整数取值为,3,之和为2,故选:C【考点】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算
9、法则是解本题的关键6、D【解析】【分析】最简公分母为,通分后求和即可【详解】解:的最简公分母为,通分得故选D【考点】本题考查了分式加法运算解题的关键与难点是找出通分时分式的最简公分母7、A【解析】【分析】未知量是速度,有路程,一定是根据时间来列等量关系的关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间【详解】顺流所用的时间为:;逆流所用的时间为:.所列方程为:.故选A【考点】本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.8、B【解析】【详解】解:分式方程去分母得:2x-a=x+1,解得:x=a+
10、1根据题意得:a+10且a+1+10,解得:a-1且a-2即字母a的取值范围为a-1故选B点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为09、解得:a-1且【考点】本题考查了分式方程的解,解题关键是要掌握解分式方程的方法和步骤3、【解析】【分析】由已知得到,整体代入求解即可【详解】解:由已知,得:,即,故答案为:【考点】本题考查了分式的化简求值,解题的关键是将已知正确变形4、【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可【详解】代数式有意义,分母不能为0,可得,即,故答案为:【考点】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键5、1【解析】【分
11、析】直接利用分式的值为零在分子为零进而得出答案【详解】解:分式值为零,x10,解得:x1故答案为:1【考点】此题主要考查了分式的值为零的条件,正确把握定义是解题关键三、解答题1、,-3或【解析】【分析】先进行分式去括号,结合完全平方式和因式分解进行分式的混合运算,得到化简后的分式再解不等式组,得出x的取值范围,且注意使原分式有意义的条件,即可得出x的具体值,将其带入化简后的分式即可【详解】原式解不等式组得其整数解为-1,0,1,2,3由题得:,x可以取0或2分当时,原式(当时,原式)【考点】本题考查分式的化简求值,和解不等式组解题时需注意使分式有意义的条件2、 (1)100米(2)90米【解析
12、】【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x米,原来每天修建米,根据工效问题公式:工作总量工作时间工作效率,列出关于x的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y米,技术更新后每天修建米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y的分式方程,解方程即可得出答案(1)解:设甲施工队增加人员后每天修建灌溉水渠x米,原来每天修建米,则有解得甲施工队增加人员后每天修建灌溉水渠100米(2)水渠总长1800米,完工时,两施工队修建长度相同两队修建的长度都为180
13、02900(米)乙施工队技术更新后,修建长度为900360540(米)解:设乙施工队原来每天修建灌溉水渠y米,技术更新后每天修建米,即1.2y米则有解得经检验,是原方程的解,符合题意乙施工队原来每天修建灌溉水渠90米【考点】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键3、A车行驶的时间为3.5小时,B车行驶的时间为2.5小时【解析】【分析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解分式方程即可,注意验根.【详解】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=
14、80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,1.4t=3.5答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时【考点】本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.4、(1);(2)无解【解析】【分析】(1)先通分,把分母变为,再去分母,求出解,最后检验;(2)先通分,把分母变为,再去分母,求出解,最后检验【详解】解:(1),经检验是原方程的解;(2),经检验是增根,原方程无解【考点】本题考查解分式方程,解题的关键是掌握解分式方程的方法,需要注意结果要检验5、(1)x=2;(2)见解析;(3)无解【解析】【分析】(1)由题意直接看出即可.(2)找到最简公分母,判断最简公分母的范围即可.(3)利用分式方程的运算方法解出即可.【详解】(1)(2)原分式方程的最简公分母为,而解这个分式方程不会产生增根.(3)方程两边同乘,得解得:经检验:当时,所以,原分式方程无解.【考点】本题考查分式方程的增根,关键在于理解增根的意义.