1、京改版八年级数学上册第十二章三角形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A1个B2个C3个D4个2、如图,在中,则()
2、ABCD3、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆,使MBC65,MCB35,得到MBCABC,所以测得MB的长就是A,B两点间的距离,这里判定MBCABC的理由是()ASASBAAACSSSDASA4、如图,在RtABC中,ABC90,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,连接BF,若BF3,AG2,则BC()A5B4C2D25、如图,在中,的平分线交于点D,DE/AB,交于点E,于点F,则下列结论错误的是()ABCD6、下列长度的3根小木棒不能搭成三角形
3、的是()A2cm,3cm,4cmB1cm,2cm,3cmC3cm,4cm,5cmD4cm,5cm,6cm7、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D18、下列说法中正确的是()A三角形的三条中线必交于一点B直角三角形只有一条高C三角形的中线可能在三角形的外部D三角形的高线都在三角形的内部9、能说明“锐角,锐角的和是锐角”是假命题的例证图是()ABCD10、自新冠肺炎疫情发生以来,全国人民共同抗疫下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)
4、1、如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为_2、边长为6的等边三角形的面积是_3、等腰三角形的的两边分别为6和3,则它的第三边为_4、如图,在中,的垂直平分线分别交、于点E、F若是等边三角形,则_5、如图,ABCD于B,ABD和BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为_三、解答题(5小题,每小题10分,共计50分)1、如图所示,在三角形ABC中,作的平分线与AC交于点E,求证:.2、如图,在RtABC中,ACB=90,A=40,ABC的外角CBD的平分线BE交AC的延长线于点E(1)求CBE的度数;(2)过点D作DFBE,交AC的延长线于点F,
5、求F的度数3、在数轴上作出表示的点(保留作图痕迹,不写作法)4、某班举行文艺晚会,桌子摆成两条直线(),桌面上摆满了橘子,桌面上摆满了糖果,坐在C处的小明先拿橘子再拿糖果,然后回到座位,请你帮他设计路线,使其行走的总路程最短(保留作图痕迹)5、如图,小明和小华两家位于A,B两处,隔河相望要测得两家之间的距离,小明设计如下方案:从点B出发沿河岸画一条射线BF,在BF上截取,过点D作,取点E使E,C,A在同一条直线上,则DE的长就是A,B之间的距离,说明他设计的道理-参考答案-一、单选题1、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同
6、一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.2、D【解析】【分析】先根据等腰三角形的性质得到B的度数,再根据平行线的性质得到BCD.【详解】解:AB=AC,A=40,B=ACB=70,CDAB,BCD=B=70,故选D.【考点】本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.3、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(ASA)
7、,故选:D【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键4、C【解析】【分析】利用线段垂直平分线的性质得到,再证明,利用勾股定理即可解决问题【详解】解:由作图方法得垂直平分,故选:【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质5、A【解析】【分析】根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明BDFDEC,求出BF=CD=
8、3,故A错误【详解】解:在中,的平分线交于点D,CD=DF=3,故B正确;DE=5,CE=4,DE/AB,ADE=DAF,CAD=BAD,CAD=ADE,AE=DE=5,故C正确;AC=AE+CE=9,故D正确;B=CDE,BFD=C=90,CD=DF,BDFDEC,BF=CD=3,故A错误;故选:A【考点】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键6、B【解析】【分析】看哪个选项中两条较小的边的和大于最大的边即可【详解】A,能构成三角形,不合题意;B,不能构成三角形,符合题意;C,能构成三角形,不合题意;D,能
9、构成三角形,不合题意故选B【考点】此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数7、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.8、A【解析】【分析】根据三角形中线及高线的定义逐一判断即可得答案【详解】A.三角形的三条中线必交于一点,故该选项正确,B.直角三角形
10、有三条高,故该选项错误,C.三角形的中线不可能在三角形的外部,故该选项错误,D.三角形的高线不一定都在三角形的内部,故该选项错误,故选:A【考点】本题考查三角形的中线及高线,熟练掌握定义是解题关键9、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案【详解】解:A、如图1,1是锐角,且1=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意; B、如图2,2是锐角,且2=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意;C、如图3,3是钝角,且3=,所以此图说明“锐角,锐角的和是锐角”是假命题,故本选项符合题意;D、如图4,4是锐
11、角,且4=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意故选:C【考点】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键10、D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意故选:D【考点】本题考查了轴对称图形,熟练掌握轴对称图形的定义是解题的关键二、填空题1、【解析】【分析】知道和是角平分线,就
12、可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30所对的边等于斜边的一半,再求出DE,得到【详解】解: 的垂直平分线交于点F, (垂直平分线上的点到线段两端点距离相等) ,是角平分线 , 【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键2、【解析】【分析】作出相应图形中,作,由三线合一性质解得DC=3,继而根据勾股定解得AD的长,最后根据三角形面积公式解题【详解】如图,在中,作,故答案为:【考点】本题考查等边三角形的性质、三线合一性质、勾股定理、三角形面积公式等知识,是重要考点,难度较易,掌握相关知识是解题关键3、6【
13、解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:由题意得:当腰为3时,则第三边也为腰,为3,此时3+36故以3,3,6不能构成三角形;当腰为6时,则第三边也为腰,为6,此时3+66,故以3,6,6可构成三角形故答案为:6【考点】本题考查了等腰三角形的定义和三角形的三边关系,已知条件没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键4、30【解析】【分析】根据垂直平分线的性质得到B=BCF,再利用等边三角形的性质得到AF
14、C=60,从而可得B.【详解】解:EF垂直平分BC,BF=CF,B=BCF,ACF为等边三角形,AFC=60,B=BCF=30.故答案为:30.【考点】本题考查了垂直平分线的性质,等边三角形的性质,外角的性质,解题的关键是利用垂直平分线的性质得到B=BCF.5、13【解析】【分析】先根据BCE等腰直角三角形得出BC的长,进而可得出BD的长,根据ABD是等腰直角三角形可知AB=BD在RtABC中利用勾股定理即可求出AC的长【详解】BCE等腰直角三角形,BE=5,BC=5CD=17,DB=CDBE=175=12ABD是等腰直角三角形,AB=BD=12在RtABC中,AB=12,BC=5,AC13故
15、答案为13【考点】本题考查了等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的性质是解答此题的关键三、解答题1、见解析【解析】【分析】由于BC,AE和BE没在一条线上,不能进行比较;故在BC上截取AE和BE,然后根据等腰三角形、角平分线的知识即可发现全等三角形,证明边的相等关系,最后运用线段的和差关系,即可完成证明.【详解】证明:如图在上截取,连结.在上截取,连结.,平分,又,【考点】本题考查了等腰三角形的性质,在进行线段比较的题目中,可以采用截取法,让它们位于一条直线上,以方便比较.2、 (1) 65;(2) 25【解析】【分析】(1)先根据直角三角形两锐角互余求出ABC=90A=50
16、,由邻补角定义得出CBD=130再根据角平分线定义即可求出CBE=CBD=65;(2)先根据直角三角形两锐角互余的性质得出CEB=9065=25,再根据平行线的性质即可求出F=CEB=25【详解】(1)在RtABC中,ACB=90,A=40,ABC=90A=50,CBD=130BE是CBD的平分线,CBE=CBD=65;(2)ACB=90,CBE=65,CEB=9065=25DFBE,F=CEB=25【考点】本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义掌握各定义与性质是解题的关键3、作图见解析.【解析】【详解】试题分析: 因为5=1+4,所以只
17、需作出以1和2为直角边的直角三角形,则其斜边的长即是然后以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可试题解析:如图,过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.4、见解析【解析】【分析】作点C关于直线AO的对称点C,点C关于直线OB的对称点D,连接CD交AO于M,交OB于N,则路线CM-MN-NC即为所求【详解】如图所示,小明的行走路线为,此时所走的总路程为的长,总路程最短【考点】本题考查了轴对称-最短路线问题,作图-应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图解题的关键是利用了轴对称的性质,两点之间线段最短的性质求解5、见解析【解析】【分析】根据两直线平行,内错角相等可得,然后利用“角角边”证明和全等,根据全等三角形对应边相等解答;【详解】解:,在和中,即的长就是、两点之间的距离【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键