1、京改版八年级数学上册第十二章三角形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆
2、,使MBC65,MCB35,得到MBCABC,所以测得MB的长就是A,B两点间的距离,这里判定MBCABC的理由是()ASASBAAACSSSDASA2、如图,与交于点,则的度数为()ABCD3、如图,B,C,E,F四点在一条直线上,下列条件能判定与全等的是()ABCD4、如图,在中,则()ABCD5、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD6、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,根据图中图形面积之间的关系及勾股定理,可直接得到等式()ABCD7、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A1个
3、B2个C3个D4个8、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A9、如图,在中,的平分线交于点D,DE/AB,交于点E,于点F,则下列结论错误的是()ABCD10、自新冠肺炎疫情发生以来,全国人民共同抗疫下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了_米2、一辆汽车的牌照在车下方水坑中的像是,则这辆汽车
4、的牌照号码应为_3、如图,在中,垂直平分,垂足为Q,交于点P按以下步骤作图:以点A为圆心,以适当的长为半径作弧,分别交边于点D,E;分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;作射线若与的夹角为,则_4、如图,则A+B+C+D+E的度数是_5、如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DEBC若CEFCHD,EFCADH,CEF:EFC5:2,C47,则ADE的度数为_三、解答题(5小题,每小题10分,共计50分)1、【教材呈现】如图是华师版七年级下册数学教材第76页的部分内容请根据教材提示,结合
5、图,将证明过程补充完整【结论应用】(1)如图,在中,60,平分,平分,求的度数(2)如图,将的折叠,使点落在外的点处,折痕为若,则、满足的等量关系为 (用、的代数式表示)2、在数轴上作出表示的点(保留作图痕迹,不写作法)3、如图,在ABC中,ACB90,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)4、已知:如图,点A、B、C、D在一条直线上,(1)求证:;(2)若,求的度数5、已知:中,BC边上的高,求BC-参考答案-一、单选题1、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(AS
6、A),故选:D【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键2、A【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得【详解】故选:A【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键3、A【解析】【分析】根据全等三角形的判定条件逐一判断即可【详解】解:A、,即在和中,故A符合题意;B、,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A【考点】本题主要考查了全等三角形的判定,
7、熟知全等三角形的判定条件是解题的关键4、D【解析】【分析】先根据等腰三角形的性质得到B的度数,再根据平行线的性质得到BCD.【详解】解:AB=AC,A=40,B=ACB=70,CDAB,BCD=B=70,故选D.【考点】本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.5、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键6、C【解析】【分析】根据小正方形的面积等于大正方形的面积减去4个直角三角形的面积可得问题的答案【详解】标记如下:,(ab)2
8、a2+b24a22ab+b2故选:C【考点】此题考查的是利用勾股定理的证明,可以完全平方公式进行证明,掌握面积差得算式是解决此题关键7、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.8、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的
9、判定,解题的关键是熟练掌握基本知识,属于中考常考题型9、A【解析】【分析】根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明BDFDEC,求出BF=CD=3,故A错误【详解】解:在中,的平分线交于点D,CD=DF=3,故B正确;DE=5,CE=4,DE/AB,ADE=DAF,CAD=BAD,CAD=ADE,AE=DE=5,故C正确;AC=AE+CE=9,故D正确;B=CDE,BFD=C=90,CD=DF,BDFDEC,BF=CD=3,故A错误;故选:A【考点】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角
10、相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键10、D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意故选:D【考点】本题考查了轴对称图形,熟练掌握轴对称图形的定义是解题的关键二、填空题1、9【解析】【分析】在RtABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长【详解】在RtABC中:CAB90,
11、BC17米,AC8米,AB15(米),CD10(米),AD6(米),BDABAD1569(米),答:船向岸边移动了9米,故答案为:9【考点】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用2、H8379【解析】【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解【详解】解:如图所示:该车牌照号码为:H8379故答案为:H8379【考点】本题考查轴对称的应用,熟练掌握轴对称的性质是解题关键 3、55【解析】【分析】根据直角三角形两锐角互余得BAC=70,由角平分线的定义得2=35,由线段垂直平分线可得AQ
12、M是直角三角形,故可得1+2=90,从而可得1=55,最后根据对顶角相等求出【详解】如图,ABC是直角三角形,C=90,是的平分线,是的垂直平分线,是直角三角形,与1是对顶角,故答案为:55【考点】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键4、180【解析】【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得4A2,2DC,进而利用三角形的内角和定理求解【详解】解:如图可知:4是三角形的外角,4A2,同理2也是三角形的外角,2DC,在BEG中,BE4180,BEADC180故答案为:180【考点】本题考查三角
13、形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系5、76【解析】【分析】根据平行线的性质和三角形的内角和解答即可【详解】解:CEFCHD,DHGE,ADHG,EFCADH,BFGEFC,GBFG,ABCG+BFG2EFC,CEF:EFC5:2,C47,EFC38,ABC76,DEBC,ADEABC76,故答案为:76【考点】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键三、解答题1、教材呈现:见解析;(1)120;(2)【解析】【分析】【教材呈现】利用两直线平行,同位角相等,内错角相等,把三角形三个内角转化成一个平角,从而得证【结论应用】(1)利用角平分线
14、的性质得出两个底角之和,从而求出P度数(2)根据四边形BCFD内角和为360,分别表示出各角得出等式即可【详解】解:教材呈现:CDBA,1ACD3+ACD+DCE180,结论应用:(1)BP平分,CP平分, (2),在ABC中,又四边形BCDF内角和为360,【考点】本题考查平行线的性质,角平分线的定义,三角形内角和定理,翻折等知识,根据翻折前后对应角相等时解题的关键2、作图见解析.【解析】【详解】试题分析: 因为5=1+4,所以只需作出以1和2为直角边的直角三角形,则其斜边的长即是然后以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可试题解析:如图,过表示数1的点A作数轴的垂线AB,取A
15、B=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.3、详见解析【解析】【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PDBCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作【考点】此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.4、(1)见解析;(2)60【解析】【分析】(1)首先利用平行线的性质得出,A=FBD,根据AB=CD即可得出AC=BD,进而得出EACFBD即可;(2)根据全等三角形的性质和三角形内角和解答即可【详解】证明:(1)EAFB,A=FBD,AB=CD,AB+BC=CD+B
16、C,即AC=BD,在EAC与FBD中,EACFBD(SAS)(2)EACFBD,ECA=D=80,A=40,E=180-40-80=60,答:E的度数为60【考点】此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等根据已知得出EACFBD是解题关键5、4或14【解析】【分析】分情况讨论,如图所示:利用勾股定理分别求出的长,从而得出的长度【详解】解:在RtABD中,BD,在RtADC中,CD,故BCBDCD14;在RtABD中,BD,在RtADC中,CD,故BCBDCD4,BC的长为或4或14【考点】此题考查了勾股定理,求解关键是利用勾股定理分别求出BD和CD,注意不要漏解