1、京改版八年级数学上册第十二章三角形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图:B=C=90,E是BC的中点,DE平分ADC,则下列说法正确的有几个()(1)AE平分DAB;(2)EBAD
2、CE; (3)AB+CD=AD;(4)AEDE(5)DE=AEA2个B3个C4个D52、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形3、如图,在中,平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD4、如图,将沿翻折,三个顶点恰好落在点处若,则的度数为()ABCD5、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD6、如图,两座建筑物,相距160km,小月从点沿BC走向点C,行走ts后她到达点,此时她仰望两座建筑物的顶点和,两条
3、视线的夹角正好为,且已知建筑物的高为,小月行走的速度为,则小月行走的时间的值为()A100B80C60D507、观察下列作图痕迹,所作线段为的角平分线的是()ABCD8、如图,在四边形ABCD中,A=60,B=D=90,AD=8,AB=7,则BC+CD等于()A6B5C4D39、如图,边长为1的正方形网格图中,点,都在格点上,若,则的长为()ABCD10、将一副三角尺按如图所示的方式摆放,则的大小为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BH 是钝角三角形 ABC 的高,AD 是角平分线, 且2C=90-ABH,若 CD=4,ABC 的面积为
4、12, 则 AD=_2、如图,则A+B+C+D+E的度数是_3、已知:如图,ABC中,ACB=90,AC=BC=,ABD是等边三角形,则CD的长度为_4、有一张直角三角形纸片,记作ABC,其中B=90按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若1=165,则2的度数为_5、如图,已知在ABD和ABC中,DABCAB,点A、B、E在同一条直线上,若使ABDABC,则还需添加的一个条件是_(只填一个即可)三、解答题(5小题,每小题10分,共计50分)1、如图,已知AC平分BAD,CEAB于E,CFAD于F,且BC=CD(1)求证:BCEDCF;(2)求证:AB+AD=2AE.
5、2、已知:如图,是的角平分线,于点 ,于点,求证:是的中垂线 3、如图,小明和小华两家位于A,B两处,隔河相望要测得两家之间的距离,小明设计如下方案:从点B出发沿河岸画一条射线BF,在BF上截取,过点D作,取点E使E,C,A在同一条直线上,则DE的长就是A,B之间的距离,说明他设计的道理4、如图,在中,是边上的一点,平分,交边于点,连接(1)求证:;(2)若,求的度数5、如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?-参考答案-一、单选题1、B【解析】【分析】过点E作EFAD垂
6、足为点F,证明DEFDEC(AAS);得出CEEF,DCDF,CEDFED,证明RtAFERtABE(HL);得出AFAB,FAEBAE,AEFAEB,即可得出答案【详解】解:如图,过点E作EFAD,垂足为点F,可得DFE90,则DFEC,DE平分ADC,FDECDE,在DCE和DFE中,DEFDEC(AAS);CEEF,DCDF,CEDFED,E是BC的中点,CEEB,EFEB,在RtABE和RtAFE中,RtAFERtABE(HL);AFAB,FAEBAE,AEFAEB,AE平分DAB,故结论(1)正确,则ADAF+DFAB+CD,故结论(3)正确;可得AEDFED+AEFFEC+BEF9
7、0,即AEDE故结论(4)正确ABCD,AEDE,(5)错误,EBADCE不可能成立,故结论(2)错误综上所知正确的结论有3个故答案为:B【考点】本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键2、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故选D【考点】本题考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答3、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,
8、代入的值即可【详解】平分,平分,设可以假设,设,则故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键4、D【解析】【分析】根据翻折变换前后对应角不变,故B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,进而求出1+2的度数【详解】解:将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,HOD+EOF+HOG=A+B+C=180,1+2=360-180=180,1=40,2=140,
9、故选:D【考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出HOD+EOF+HOG=A+B+C=180是解题关键5、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质6、A【解析】【分析】首先证明A=DEC,然后可利用AAS判定ABEECD,进而可得EC=AB=60m,再求出BE的长,然后利用路程除以速度可得时间【详解】解:AED=90,AEB+DEC=90,ABE=90,A+AEB=90,A=DEC,在ABE和ECD中,ABEECD(AAS),EC=A
10、B=60m,BC=160m,BE=100m,小华走的时间是1001=100(s),故选:A【考点】本题主要考查了全等三角形的应用,关键是正确判定ABEECD7、C【解析】【分析】根据角平分线画法逐一进行判断即可【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点8、B【解析】【分析】延长DC至E,构建直角ADE,解直角ADE求得DE,BE,根据BE解直角CBE可得B
11、C,CE,进而求解【详解】如图,延长AB、DC相交于E,在RtADE中,可求得AE2-DE2=AD2,且AE=2AD,计算得AE=16,DE=8,于是BE=AE-AB=9,在RtBEC中,可求得BC2+BE2=CE2,且CE=2BC,BC=3,CE=6,于是CD=DE-CE=2,BC+CD=5故选B【考点】本题考查了勾股定理的运用,考查了30角所对的直角边是斜边的一半的性质,本题中构建直角ADE求BE,是解题的关键9、B【解析】【分析】利用勾股定理求出AB,再减去BC可得AC的长【详解】解:由图可知:AB=,BC=,AC=AB-BC=,故选B【考点】本题考查了二次根式的加减,勾股定理与网格问题
12、,解题的关键是利用勾股定理求出线段AB的长10、B【解析】【分析】先根据直角三角板的性质得出ACD的度数,再由三角形内角和定理即可得出结论【详解】解:如图所示,由一副三角板的性质可知:ECD=60,BCA=45,D=90,ACD=ECDBCA=6045=15,=180DACD=1809015=75, 故选:B【考点】本题考查的是三角形内角和定理,熟知三角形内角和是180是解答此题的关键二、填空题1、3【解析】【分析】根据三角形的外角性质和已知条件易证明ABCC,则可判断ABC为等腰三角形,然后根据等腰三角形的性质可得ADBC,BDCD4,再利用三角形面积公式即可求出AD的长【详解】解:BH为A
13、BC的高,AHB90,BAH90ABH,而2C90ABH,BAH2C,BAHC+ABC,ABCC,ABC为等腰三角形,AD是角平分线,ADBC,BDCD4,ABC的面积为12,ADBC12,即AD812,AD3故答案为:3【考点】本题考查了三角形的外角性质、等腰三角形的判定和性质以及三角形的面积,熟练掌握上述知识是解题的关键2、180【解析】【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得4A2,2DC,进而利用三角形的内角和定理求解【详解】解:如图可知:4是三角形的外角,4A2,同理2也是三角形的外角,2DC,在BEG中,BE4180,BEADC180故答案为:180【考点】本题考
14、查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系3、【解析】【分析】由勾股定理求出AB,根据等边三角形的性质得出AB=AD=BD=2,DAB=ABD=60,证出ABCD于E,且AE=BE=1,求出AE=CE=1,由勾股定理求出DE,即可得出结果【详解】解:ACB=90,AC=BC=,AB=,CAB=CBA=45,ABD是等边三角形,AB=AD=BD=2,DAB=ABD=60,AC=BC,AD=BD,ABCD于E,且AE=BE=1,在RtAEC中,AEC=90,EAC=45,EAC=ACE=45,AE=CE=1,在RtAED中,AED=90,AD=2,AE=1,DE=,C
15、D=故答案为【考点】本题考查了勾股定理,等腰直角三角形的性质,等边三角形的性质,线段垂直平分线的性质等知识运用勾股定理求出DE是解决本题的关键4、105.【解析】【分析】根据三角形内角和定理结合B的度数即可得出BDE+BED的度数,再根据BDE与2互补、BED与1互补,即可求出1+2的度数,代入1=165即可得出结论【详解】B=90,BDE+BED=180-B=90,又BDE+2=180,BED+1=180,1+2=360-(BDE+BED)=2701=165,2=105故答案为:105【考点】本题考查了三角形内角和定理,根据三角形内角和定理求出BDE+BED的度数是解题的关键5、ADAC(D
16、C或ABDABC等)【解析】【分析】利用全等三角形的判定方法添加条件即可求解【详解】解:DABCAB,ABAB,当添加ADAC时,可根据“SAS”判断ABDABC;当添加DC时,可根据“AAS”判断ABDABC;当添加ABDABC时,可根据“ASA”判断ABDABC故答案为ADAC(DC或ABDABC等)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件三、解答题1、详见解析【解析】【分析】(1)由角平分线定义可证BCEDCF(HL);(2)先证RtFACRtEAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AFDF)=A
17、E+BE+AEDF=2AE.【详解】(1)证明:AC是角平分线,CEAB于E,CFAD于F,CE=CF,F=CEB=90,在RtBCE和RtDCF中,BCEDCF;(2)解:CEAB于E,CFAD于F,F=CEA=90,在RtFAC和RtEAC中,RtFACRtEAC,AF=AE,BCEDCF,BE=DF,AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【考点】本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL2、见解析.【解析】【分析】由AD是ABC的角平分线,DEA
18、B,DFAC,根据角平分线的性质,可得DE=DF,BED=CFD=90,继而证得RtBEDRtCFD,则可得B=C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.【详解】解:是的角平分线,在和中,是的角平分线,是的中垂线.【考点】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质注意掌握三线合一性质的应用.3、见解析【解析】【分析】根据两直线平行,内错角相等可得,然后利用“角角边”证明和全等,根据全等三角形对应边相等解答;【详解】解:,在和中,即的长就是、两点之间的距离【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键4、 (1)见解析;(2)【解析
19、】【分析】(1)由角平分线定义得出,由证明即可;(2)由三角形内角和定理得出,由角平分线定义得出,在中,由三角形内角和定理即可得出答案【详解】(1)证明:平分,在和中,;(2),平分,在中,【考点】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键5、(1)12米;(2)【解析】【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度(2)由(1)可以得出梯子的初始高度,下滑1米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为5米,可以得出,梯子底端水平方向上滑行的距离【详解】解:(1)根据勾股定理:所以梯子距离地面的高度为:AO=12(米);答:这个梯子的顶端距地面有12米高;(2)梯子下滑了1米即梯子距离地面的高度为OA=125=7(米),根据勾股定理:OB=2 (米),BB=OBOB=(25)米答:当梯子的顶端下滑1米时,梯子的底端水平后移了(25)米.【考点】本题考查了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求OB的长度是解题的关键