1、京改版八年级数学上册第十二章三角形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC和EDF中,BD90,AE,点B,F,C,D在同一条直线上,再增加一个条件,不能判定ABCEDF的是(
2、)AABEDBACEFCACEFDBFDC2、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里3、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD4、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD5、在ABC中,那么ABC是()A等腰三角形B
3、钝角三角形C直角三角形D等腰直角三角形6、如图,的角平分线交于点,若,则的度数()ABCD7、如图,与相交于点O,不添加辅助线,判定的依据是()ABCD8、如图,在ABC中,AB6,AC9,ADBC于D,M为AD上任一点,则MC2MB2等于()A29B32C36D459、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三角形全等的判定解释作图原理,最为恰当的是()ABCD10、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D8
4、0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、三角形三边长分别为3,则a的取值范围是_2、将一张长方形纸条折成如图所示的形状,若1=110,则2=_3、已知:如图,ABC中,ACB=90,AC=BC=,ABD是等边三角形,则CD的长度为_4、如果三角形两条边分别为3和5,则周长L的取值范围是_5、如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的DEF的周长是_ 三、解答题(5小题,每小题10分,共计50分)1、如图,A、B两个村子在笔直河岸的同侧,A、B两村到河岸的距离分别为AC2km,BD3k
5、m,CD6km,现在要在河岸CD上建一水厂E向A、B两村输送自来水,要求A、B两村到水厂E的距离相等(1)在图中作出水厂E的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂E距离C处多远?2、如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?3、如图,点D是等边三角形ABC的边BC上一点,以AD为边作等边ADE,连接CE.(1)求证:;(2)若BAD=20,求AEC的度数. 4、如图,AD是ABC的角平分线,DE、DF分别是ABD和ACD的高(1)求证:AD垂直平分EF
6、;(2)若AB+AC10,SABC15,求DE的长5、在中,BE,CD为的角平分线,BE,CD交于点F(1)求证:;(2)已知如图1,若,求CE的长;如图2,若,求的大小-参考答案-一、单选题1、C【解析】【分析】根据全等三角形的判定方法即可判断.【详解】A. ABED,可用ASA判定ABCEDF;B. ACEF,可用AAS判定ABCEDF;C. ACEF,不能用AAA判定ABCEDF,故错误;D. BFDC,可用AAS判定ABCEDF;故选C.【考点】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.2、C【解析】【分析】根据题意画出图形,根据三角形外角性质求出C=CAB=
7、42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大3、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及三角形内角和与对顶角,可判断正确;证明AFMBAD(AAS),得出FM=AD,FAM=ABD,则正确,同理ANGCDA,得出NG=AD,则FM=NG,证明FMEGNE(AAS)可
8、得出结论正确【详解】解:BAF=CAG=90,BAF+BAC=CAG+BAC,即CAF=GAB,又AB=AF=AC=AG,CAFGAB(SAS),BG=CF,故正确;FACBAG,FCA=BGA,又BC与AG所交的对顶角相等,BG与FC所交角等于GAC,即等于90,BGCF,故正确;过点F作FMAE于点M,过点G作GNAE交AE的延长线于点N,FMA=FAB=ADB=90,FAM+BAD=90,FAM+AFM=90,BAD=AFM,又AF=AB,AFMBAD(AAS),FM=AD,FAM=ABD,故正确,同理ANGCDA,NG=AD,FM=NG,FMAE,NGAE,FME=ENG=90,AEF
9、=NEG,FMEGNE(AAS)EF=EG故正确故选:D【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识熟练掌握全等三角形的判定与性质是解题的关键4、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键5、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故
10、选D【考点】本题考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答6、A【解析】【分析】法一:延长PC交BD于E,设AC、PB交于F,根据三角形的内角和定理得到AABFAFBPPCFPFC180推出PPCFAABF,根据三角形的外角性质得到PPBEPED,推出PPBEPCDD,根据PB、PC是角平分线得到PCFPCD,ABFPBE,推出2PAD,代入即可求出P法二:延长DC,与AB交于点E设AC与BP相交于O,则AOBPOC,可得PACDAABD,代入计算即可【详解】解:法一:延长PC交BD于E,设AC、PB交于F,AABFAFBPPCFPFC180,AFBPFC,PPC
11、FAABF,PPBEPED,PEDPCDD,PPBEPCDD,2PPCFPBEADABFPCD,PB、PC是角平分线PCFPCD,ABFPBE,2PADA48,D10,P19法二:延长DC,与AB交于点EACD是ACE的外角,A48,ACDAAEC48AECAEC是BDE的外角,AECABDDABD10,ACD48AEC48ABD10,整理得ACDABD58设AC与BP相交于O,则AOBPOC,PACDAABD,即P48(ACDABD)19故选A.【考点】本题主要考查对三角形的内角和定理,三角形的外角性质,对顶角的性质,角平分线的性质等知识点的理解和掌握,能熟练地运用这些性质进行计算是解此题的
12、关键7、B【解析】【分析】根据,正好是两边一夹角,即可得出答案【详解】解:在ABO和DCO中,故B正确故选:B【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键8、D【解析】【分析】在RtABD及RtADC中可分别表示出BD2及CD2,在RtBDM及RtCDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果【详解】解:在RtABD和RtADC中,BD2AB2AD2,CD2AC2AD2,在RtBDM和RtCDM中,BM2BD2MD2AB2AD2MD2,MC2CD2MD2AC2AD2MD2,MC2MB2(AC
13、2AD2MD2)(AB2AD2MD2)AC2AB245故选:D【考点】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握9、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键10、B【解析】【分析】根据线段垂直
14、平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键二、填空题1、【解析】【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围【详解】三角形的三边长分别为3,4,即,故答案为【考点】本题考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系
15、2、55【解析】【分析】先根据平行线的性质求出的度数,再根据翻折的性质即可得出答案【详解】,纸条的两边互相平行根据翻折的性质得:故答案为:55【考点】本题考查了平行线的性质、图形翻折的性质,掌握理解图形翻折的性质是解题关键3、【解析】【分析】由勾股定理求出AB,根据等边三角形的性质得出AB=AD=BD=2,DAB=ABD=60,证出ABCD于E,且AE=BE=1,求出AE=CE=1,由勾股定理求出DE,即可得出结果【详解】解:ACB=90,AC=BC=,AB=,CAB=CBA=45,ABD是等边三角形,AB=AD=BD=2,DAB=ABD=60,AC=BC,AD=BD,ABCD于E,且AE=B
16、E=1,在RtAEC中,AEC=90,EAC=45,EAC=ACE=45,AE=CE=1,在RtAED中,AED=90,AD=2,AE=1,DE=,CD=故答案为【考点】本题考查了勾股定理,等腰直角三角形的性质,等边三角形的性质,线段垂直平分线的性质等知识运用勾股定理求出DE是解决本题的关键4、10L16【解析】【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案【详解】设第三边长为x,有两条边分别为3和5,5-3x5+3,解得2x8,2+3+5x+3+58+3+5,周长L=x+3+5,10L16,故答案为: 10L16【考点】此题考查三角形三边关系,不等式的性质,熟记
17、三角形的三边关系确定出第三条边长是解题的关键5、6【解析】【分析】先说明DEF是等边三角形,再根据E,F是边BC上的三等分求出BC的长,最后求周长即可.【详解】解:等边三角形纸片ABCB=C=60DEAB,DFACDEF=DFE=60DEF是等边三角形DE=EF=DFE,F是边BC上的三等分点,BC=6EF=2DE=EF=DF=2DEF= DE+EF+DF=6故答案为6【考点】本题考查了等边三角形的判定和性质、三等分点的意义,灵活应用等边三角形的性质是正确解答本题的关键三、解答题1、(1)作图见解析;(2)【解析】【分析】(1)作线段AB的垂直平分线交CD于点E,即可确定水厂的位置;(2)根据
18、勾股定理即可求相处水厂E距离C处的距离【详解】(1)如图所示:点E即为确定水厂的位置;(2)根据作图过程可知:EA=EB,在RtAEC和RtBED中,根据勾股定理,得,即,解得CE=,答:水厂E距离C处km【考点】本题考查了尺规作图-线段的垂直平分线,勾股定理;解题的关键是掌握垂直平分线的性质及勾股定理的应用2、(1)12米;(2)【解析】【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度(2)由(1)可以得出梯子的初始高度,下滑1米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为5米,可以得出,梯子底端水平方向上滑行的距离【详解】解:(1)根据勾股定
19、理:所以梯子距离地面的高度为:AO=12(米);答:这个梯子的顶端距地面有12米高;(2)梯子下滑了1米即梯子距离地面的高度为OA=125=7(米),根据勾股定理:OB=2 (米),BB=OBOB=(25)米答:当梯子的顶端下滑1米时,梯子的底端水平后移了(25)米.【考点】本题考查了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求OB的长度是解题的关键3、(1)见解析;(2)100【解析】【分析】(1)根据ADE与ABC都是等边三角形,得到AC=AB,AE=AD,DAE=BAC=60,从而得到DAE+CAD=BAC+CAD,即CAE=BAD,利用SAS证得ABDACE;(2)由ABDA
20、CE,得到ACE=B=60,BAD=CAE=20,再由三角形内角和为180即可求出AEC的度数【详解】(1)证明:ADE与ABC都是等边三角形,AC=AB,AE=AD,DAE=BAC=60,DAE+CAD=BAC+CAD,即CAE=BAD,在CAE与BAD中,ABDACE(SAS);(2)ABDACE,ACE=B=60,BAD=CAE=20,AEC=180-60-20=100【考点】此题考查全等三角形的判定与性质及等边三角形的性质,根据等边三角形中隐含的条件可以得到证明三角形全等的一些条件是解题关键4、(1)见解析;(2)【解析】【分析】(1)由角平分线的性质得DEDF,再根据HL证明RtAE
21、DRtAFD,得AEAF,从而证明结论;(2)根据DEDF,得,代入计算即可【详解】(1)证明:AD是ABC的角平分线,DE、DF分别是ABD和ACD的高,DEDF,在RtAED与RtAFD中,RtAEDRtAFD(HL),AEAF,DEDF,AD垂直平分EF;(2)解:DEDF,AB+AC10,DE3【考点】本题考查了全等三角形的判定与性质,角平分线的性质,解题的关键是掌握这些知识点5、(1)证明见解析;(2)2.5;(3)100【解析】【分析】(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,(2)在BC上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,再由三角形内角和可求,进而可得【详解】解:(1)、分别是与的角平分线,(2)如解(2)图,在BC上取一点G使BG=BD,由(1)得,在与中, ,(SAS), ,在与中,;,(3)如解(3)图,延长BA到P,使AP=FC,在与中, ,(SAS),又,又,【考点】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键