收藏 分享(赏)

2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx

上传人:a**** 文档编号:693653 上传时间:2025-12-13 格式:DOCX 页数:23 大小:432.87KB
下载 相关 举报
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第1页
第1页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第2页
第2页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第3页
第3页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第4页
第4页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第5页
第5页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第6页
第6页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第7页
第7页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第8页
第8页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第9页
第9页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第10页
第10页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第11页
第11页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第12页
第12页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第13页
第13页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第14页
第14页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第15页
第15页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第16页
第16页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第17页
第17页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第18页
第18页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第19页
第19页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第20页
第20页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第21页
第21页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第22页
第22页 / 共23页
2022年京改版八年级数学上册第十二章三角形专题测评试卷(含答案详解版).docx_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册第十二章三角形专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆

2、,使MBC65,MCB35,得到MBCABC,所以测得MB的长就是A,B两点间的距离,这里判定MBCABC的理由是()ASASBAAACSSSDASA2、如图:B=C=90,E是BC的中点,DE平分ADC,则下列说法正确的有几个()(1)AE平分DAB;(2)EBADCE; (3)AB+CD=AD;(4)AEDE(5)DE=AEA2个B3个C4个D53、若等腰三角形的顶角是40,则它的底角是()A40B70C80D1004、如图,在中,以各边为斜边分别向外作等腰、等腰、等腰,将等腰和等腰按如图方式叠放到等腰中,已知,则长为()A2BC6D85、图中的小正方形边长都相等,若,则点Q可能是图中的(

3、)A点DB点CC点BD点A6、如图,点A表示的实数是()ABCD7、如图,两座建筑物,相距160km,小月从点沿BC走向点C,行走ts后她到达点,此时她仰望两座建筑物的顶点和,两条视线的夹角正好为,且已知建筑物的高为,小月行走的速度为,则小月行走的时间的值为()A100B80C60D508、如图,在ABC中,ABC90,AB3,BC1,AB在数轴上,以点A为圆心,AC长为半径作弧,交数轴的正半轴于点M,则M表示的数为()A2.1B1CD19、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D8010、已知ABC的三边分别是

4、a,b,c,且满足|a-2|+(c-4)2=0,则以a,b,c为边可构成()A以c为斜边的直角三角形B以a为斜边的直角三角形C以b为斜边的直角三角形D有一个内角为的直角三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,分别以点为圆心,大于的长为半径画弧,两弧相交于点作直线,交边于点,连接,则的周长为_2、如图,在中,按以下步骤作图:以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E分别以点D、E为圆心,大于的同样长为半径作弧,两弧交于点F作射线BF交AC于点G如果,的面积为18,则的面积为_3、如图,已知在ABD和ABC中,DABCAB,点A、B

5、、E在同一条直线上,若使ABDABC,则还需添加的一个条件是_(只填一个即可)4、如图,在中,垂直平分,垂足为Q,交于点P按以下步骤作图:以点A为圆心,以适当的长为半径作弧,分别交边于点D,E;分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;作射线若与的夹角为,则_5、如图,平分,的延长线交于点,若,则的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,求的各内角的度数2、一个零件形状如图所示,按规定应等于75,和应分别是18和22,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由3、如图,在ABC中,CDAB于点D,若AC=,CD=5

6、,BC=13,求ABC的面积4、如图,在ABC中,ACB90,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)5、在数轴上作出表示的点(保留作图痕迹,不写作法)-参考答案-一、单选题1、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(ASA),故选:D【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键2、B【解析】【分析】过点E作EFAD垂足为点F,证明DEFDEC(AAS);得出CEEF,DCDF,CEDFED,证明RtAFERtABE(HL);得出AFAB,

7、FAEBAE,AEFAEB,即可得出答案【详解】解:如图,过点E作EFAD,垂足为点F,可得DFE90,则DFEC,DE平分ADC,FDECDE,在DCE和DFE中,DEFDEC(AAS);CEEF,DCDF,CEDFED,E是BC的中点,CEEB,EFEB,在RtABE和RtAFE中,RtAFERtABE(HL);AFAB,FAEBAE,AEFAEB,AE平分DAB,故结论(1)正确,则ADAF+DFAB+CD,故结论(3)正确;可得AEDFED+AEFFEC+BEF90,即AEDE故结论(4)正确ABCD,AEDE,(5)错误,EBADCE不可能成立,故结论(2)错误综上所知正确的结论有3

8、个故答案为:B【考点】本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键3、B【解析】【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数【详解】解:因为等腰三角形的两个底角相等,又因为顶角是40,所以其底角为70故选:B【考点】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等4、D【解析】【分析】设ADDBa,AFCFb,BECEc,由勾股定理可求a2+b2c2,由 ,可求b4,即可求解【详解】解:设ADDBa,AFCFb,BECEc,ABa,ACb,BCc,BAC90,AB2+AC2BC2,2a2+2b22c2

9、,a2+b2c2,将等腰RtADB和等腰RtAFC按如图方式叠放到等腰RtBEC,BGGHa,(a+c)(ca)16,c2a232,b232,b4,ACb8,故选:D【考点】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键5、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型6、B【解析】【分析】根据勾股定理可求得OA的长为,再根据点A在原点的左侧,从而得出点A所表示的数【详解】解:如图,OB=,OA=OB,OA=,点A在原点的左侧,点A在数轴上表示的实数

10、是-,故B正确故选:B【考点】本题考查了实数和数轴,以及勾股定理,注意原点左边的数是负数7、A【解析】【分析】首先证明A=DEC,然后可利用AAS判定ABEECD,进而可得EC=AB=60m,再求出BE的长,然后利用路程除以速度可得时间【详解】解:AED=90,AEB+DEC=90,ABE=90,A+AEB=90,A=DEC,在ABE和ECD中,ABEECD(AAS),EC=AB=60m,BC=160m,BE=100m,小华走的时间是1001=100(s),故选:A【考点】本题主要考查了全等三角形的应用,关键是正确判定ABEECD8、B【解析】【分析】先根据勾股定理求出AB的长,进而可而出结论

11、【详解】ABC中,B=90,AB=3,BC=1,AC=A点表示1,M点表示1故选:B【考点】本题考查勾股定理及实数与数轴,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键9、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关

12、键10、B【解析】【分析】利用非负数的性质求得a、b、c的数值,利用勾股定理的逆定理判定三角形的形状即可【详解】解:由题意可得:a=,b=2,c=4,22+42=20,()220,即b2+c2=a2,所以ABC是以a为斜边的直角三角形故选B【考点】本题考查了非负数的性质和勾股定理的逆定理,根据非负数的性质求得a、b、c的值是解决此题的关键二、填空题1、【解析】【分析】由题意可得MN为AB的垂直平分线,所以AD=BD,进一步可以求出的周长.【详解】在中,分别以A、B为圆心,大于的长为半径画弧,两弧交于M,N,作直线MN,交BC边于D,连接AD;MN为AB的垂直平分线,AD=BD,的周长为:AD+

13、DC+AC=BC+AC=13;故答案为13.【考点】本题主要考查的是垂直平分线的运用,掌握定义及相关方法即可.2、27【解析】【分析】由作图步骤可知BG为ABC的角平分线,过G作GHBC,GMAB,可得GM=GH,然后再结合已知条件和三角形的面积公式求得GH,最后运用三角形的面积公式解答即可【详解】解:由作图作法可知:BG为ABC的角平分线过G作GHBC,GMABGM=GH,故答案为27【考点】本题考查了角平分线定理和三角形面积公式的应用,通过作法发现角平分线并灵活应用角平分线定理是解答本题的关键3、ADAC(DC或ABDABC等)【解析】【分析】利用全等三角形的判定方法添加条件即可求解【详解

14、】解:DABCAB,ABAB,当添加ADAC时,可根据“SAS”判断ABDABC;当添加DC时,可根据“AAS”判断ABDABC;当添加ABDABC时,可根据“ASA”判断ABDABC故答案为ADAC(DC或ABDABC等)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件4、55【解析】【分析】根据直角三角形两锐角互余得BAC=70,由角平分线的定义得2=35,由线段垂直平分线可得AQM是直角三角形,故可得1+2=90,从而可得1=55,最后根据对顶角相等求出【详解】如图,ABC是直角三角形,C=90,是的平分线,是的垂直平分线,是直

15、角三角形,与1是对顶角,故答案为:55【考点】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键5、【解析】【分析】如图,连接,延长与交于点利用等腰三角形的三线合一证明是的垂直平分线,从而得到 再次利用等腰三角形的性质得到:从而可得答案【详解】解:如图,连接,延长与交于点 平分, 是的垂直平分线, 故答案为: 【考点】本题考查的是等腰三角形的性质,掌握等腰三角形的三线合一是解题的关键三、解答题1、【解析】【分析】根据等腰三角形的性质,三角形内角和等于以及三角形外角的性质即可得解【详解】解:,故【考点】本题考查了等腰三角形的

16、性质,三角形内角和定理,三角形外角的性质等知识点,熟知以上性质定理是解本题的关键2、不合格,理由见解析【解析】【分析】延长BD与AC相交于点E利用三角形的外角性质,可得,即可求解【详解】解:如图,延长BD与AC相交于点E是的一个外角,同理可得李师傅量得,不是115,这个零件不合格【考点】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键3、【解析】【分析】由于CDAB,CD为RtADC和RtBCD的公共边,在这两个三角形中利用勾股定理可求出AD和BD的长,然后根据三角形面积公式求得即可【详解】解:CDAB,CDA=BDC=90在RtADC中,AD2

17、=AC2CD2,在RtBCD中,BD2=BC2CD2,AC= ,CD=5,BC=13,AD=3,BD=12,AB=15,SABC=ABCD=.【考点】本题考查了勾股定理的运用,根据勾股定理求得AB的长是解题的关键4、详见解析【解析】【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PDBCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作【考点】此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.5、作图见解析.【解析】【详解】试题分析: 因为5=1+4,所以只需作出以1和2为直角边的直角三角形,则其斜边的长即是然后以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可试题解析:如图,过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1