收藏 分享(赏)

2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx

上传人:a**** 文档编号:693650 上传时间:2025-12-13 格式:DOCX 页数:26 大小:485.27KB
下载 相关 举报
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第1页
第1页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第2页
第2页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第3页
第3页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第4页
第4页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第5页
第5页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第6页
第6页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第7页
第7页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第8页
第8页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第9页
第9页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第10页
第10页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第11页
第11页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第12页
第12页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第13页
第13页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第14页
第14页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第15页
第15页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第16页
第16页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第17页
第17页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第18页
第18页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第19页
第19页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第20页
第20页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第21页
第21页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第22页
第22页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第23页
第23页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第24页
第24页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第25页
第25页 / 共26页
2022年京改版八年级数学上册第十二章三角形专题攻克试卷.docx_第26页
第26页 / 共26页
亲,该文档总共26页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册第十二章三角形专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,按以下步骤进行尺规作图:(1)以点为圆心,任意长为半径作弧,交的两边,分别于,两点;(2)分别以点,为圆心,

2、大于的长为半径作弧,两弧在内交于点;(3)作射线,连接,下列结论错误的是()A垂直平分BCD2、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D43、下列长度的3根小木棒不能搭成三角形的是()A2cm,3cm,4cmB1cm,2cm,3cmC3cm,4cm,5cmD4cm,5cm,6cm4、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或65、下列四组数中,是勾股数的是()A5,1

3、2,13B4,5,6C2,3,4D1,6、如图,在中,的周长10,和的平分线交于点,过点作分别交、于、,则的长为()A10B6C4D不确定7、等腰三角形有两条边长为5cm和9cm,则该三角形的周长是A19cmB23cmC19cm或23cmD18cm8、 “三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,点,可在槽中滑动,若,则的度数是()A60B65C75D809、如图,将沿翻折,三个顶点恰好落在点处若,则的度数为()ABCD10、如图,RtACB中,ACB=90,ACB的角平分

4、线AD,BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB=135; AD=PF+PH;DH平分CDE;S四边形ABDE=SABP;SAPH=SADE,其中正确的结论有()个A2B3C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)等腰三角形底边长为6cm,一腰上的中线把它的周长分成两部分的差为2cm,则腰长为_(2)已知的周长为24,于点D,若的周长为20,则AD的长为_(3)已知等腰三角形的周长为24,腰长为x,则x的取值范围是_2、一个三角形的周长是偶数,其中的两条边是4和2012,则满足上述条件的三角形的个数是_个3

5、、三角形三边长分别为3,则a的取值范围是_4、如图,在中,的垂直平分线分别交、于点E、F若是等边三角形,则_5、九章算术是我国古代最重要的数学著作之一,在勾股章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折着高几何?”翻译成数学问题是:如图所示,在ABC中,ACB=90, AC+AB=10, BC=3,求AC的长,若设AC=x, 则可列方程为_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,点A、B、C、D在一条直线上,(1)求证:;(2)若,求的度数2、如图,在RtABC中,ACB=90,A=40,ABC的外角CBD的平分线BE交AC的延长线于点E(1)

6、求CBE的度数;(2)过点D作DFBE,交AC的延长线于点F,求F的度数3、如图,在ABC中,CDAB于点D,若AC=,CD=5,BC=13,求ABC的面积4、已知:在中,点在直线上,点在同一条直线上,且,【问题初探】(1)如图1,若平分,求证:请依据以下的简易思维框图,写出完整的证明过程【变式再探】(2)如图2,若平分的外角,交的延长线于点,问:和的数量关系发生改变了吗?若改变,请写出正确的结论,并证明;若不改变,请说明理由【拓展运用】(3)如图3,在的条件下若,求的长度5、如图,中,是边上一点,且,若求的长-参考答案-一、单选题1、D【解析】【分析】利用全等三角形的性质以及线段的垂直平分线

7、的判定解决问题即可【详解】解:由作图可知,在OCD和OCE中,OCDOCE(SSS),DCO=ECO,1=2,OD=OE,CD=CE,OC垂直平分线段DE,故A,B,C正确,没有条件能证明CE=OE,故选:D【考点】本题考查了作图-基本作图,全等三角形的判定和性质,线段的垂直平分线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题2、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数

8、为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键3、B【解析】【分析】看哪个选项中两条较小的边的和大于最大的边即可【详解】A,能构成三角形,不合题意;B,不能构成三角形,符合题意;C,能构成三角形,不合题意;D,能构成三角形,不合题意故选B【考点】此题考查了三角形三边关系,解题关键在于看较小的两个数的和

9、能否大于第三个数4、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答5、A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方【详解】解:A、52+122132,都是正整数,

10、是勾股数,故此选项符合题意;B、42+5262,不是勾股数,故此选项不合题意;C、22+3242,不是勾股数,故此选项不合题意;D、,不是正整数,不是勾股数,故此选项不合题意;故选:A【考点】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数6、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO = DB和EO=EC,从而得出DE=DBEC,然后根据的周长即可求出AB.【详解】解:OBC=DOBBO平分OBC=DBODOB=DBODO = DB同理可证:EO=ECDE=DOEO= DBEC,的周长10

11、,ADAEDE=10ADAEDBEC =10ABAC=10AB=10AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.7、C【解析】【分析】根据周长的计算公式计算即可.(三角形的周长等于三边之和.)【详解】根据三角形的周长公式可得:C=5+5+9=19或C=9+9+5=23.【考点】本题主要考查等腰三角形的性质,关键在于本题没有说明那个长是等腰三角形的腰,因此要分类讨论.8、D【解析】【分析】根据OC=CD=DE,可得O=ODC,DCE=DEC,根据三角形的外角性质可知DCE=O+ODC=2ODC据三角形

12、的外角性质即可求出ODC数,进而求出CDE的度数【详解】,设,即,解得:,.故答案为D.【考点】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键9、D【解析】【分析】根据翻折变换前后对应角不变,故B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,进而求出1+2的度数【详解】解:将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,HOD+EOF+HOG=A+B+C=180,1+2=360-180=180,1=40,2=140,故选:D【考点】此题主要

13、考查了翻折变换的性质和三角形的内角和定理,根据已知得出HOD+EOF+HOG=A+B+C=180是解题关键10、B【解析】【分析】正确利用三角形内角和定理以及角平分线的定义即可解决问题正确证明ABPFBP,推出PA=PF,再证明APHFPD,推出PH=PD即可解决问题错误利用反证法,假设成立,推出矛盾即可错误,可以证明S四边形ABDE=2SABP正确由DHPE,利用等高模型解决问题即可【详解】解:在ABC中,AD、BE分别平分BAC、ABCACB=90A+B=90又AD、BE分别平分BAC、ABCBAD+ABE=(A+B)=45APB=135,故正确BPD=45又PFADFPB=90+45=1

14、35APB=FPB又ABP=FBPBP=BPABPFBP(ASA)BAP=BFP,AB=FB,PA=PF在APH和FPD中APHFPD(ASA)PH=PDAD=AP+PD=PF+PH故正确ABPFBP,APHFPDSAPB=SFPB,SAPH=SFPD,PH=PDHPD=90HDP=DHP=45=BPDHDEPSEPH=SEPDSAPH=SAED,故正确S四边形ABDE=SABP+SAEP+SEPD+SPBD=SABP+(SAEP+SEPH)+SPBD=SABP+SAPH+SPBD=SABP+SFPD+SPBD=SABP+SFBP=2SABP,故不正确若DH平分CDE,则CDH=EDHDHBE

15、CDH=CBE=ABECDE=ABCDEAB,这个显然与条件矛盾,故错误故选B【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型二、填空题1、 4cm或8cm 8 【解析】【分析】(1)根据题意画出图形,由题意得 ,即可得 ,又由等腰三角形的底边长为6cm,即可求得答案(2)由ABC的周长为24得到AB,BC的关系,由ABD的周长为20得到AB,BD,AD的关系,再由等腰三角形的性质知,BC为BD的2倍,故可解出AD的值(3)设底边长为y,再由三角形的三边关系即可得出答案【详解】(1)如图

16、, ,BD是中线由题意得存在两种情况:, , 腰长为:4cm或8cm故答案为:4cm或8cm(2)ABC的周长为24, 的周长为20 故答案为:8(3)设底边长为y等腰三角形的周长为24,腰长为x ,即 解得 故答案为:【考点】本题考查了三角形的综合问题,掌握等腰三角形的性质、等腰三角形三线合一的性质、三角形的周长定义、三角形的三边关系是解题的关键2、3【解析】【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围后,根据周长是偶数舍去不合题意的值即可【详解】3、【解析】【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求

17、出a的取值范围【详解】三角形的三边长分别为3,4,即,故答案为【考点】本题考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系4、30【解析】【分析】根据垂直平分线的性质得到B=BCF,再利用等边三角形的性质得到AFC=60,从而可得B.【详解】解:EF垂直平分BC,BF=CF,B=BCF,ACF为等边三角形,AFC=60,B=BCF=30.故答案为:30.【考点】本题考查了垂直平分线的性质,等边三角形的性质,外角的性质,解题的关键是利用垂直平分线的性质得到B=BCF.5、【解析】【分析】设AC=x,则AB=10-x,再由即可列出方程【详解】解:,且,在RtABC中,由勾股定理有:,即:

18、,故可列出的方程为:,故答案为:【考点】本题考查了勾股定理的应用,熟练掌握勾股定理是解决本题的关键三、解答题1、(1)见解析;(2)60【解析】【分析】(1)首先利用平行线的性质得出,A=FBD,根据AB=CD即可得出AC=BD,进而得出EACFBD即可;(2)根据全等三角形的性质和三角形内角和解答即可【详解】证明:(1)EAFB,A=FBD,AB=CD,AB+BC=CD+BC,即AC=BD,在EAC与FBD中,EACFBD(SAS)(2)EACFBD,ECA=D=80,A=40,E=180-40-80=60,答:E的度数为60【考点】此题主要考查了全等三角形的判定与性质等知识,解题时注意:两

19、边及其夹角分别对应相等的两个三角形全等根据已知得出EACFBD是解题关键2、 (1) 65;(2) 25【解析】【分析】(1)先根据直角三角形两锐角互余求出ABC=90A=50,由邻补角定义得出CBD=130再根据角平分线定义即可求出CBE=CBD=65;(2)先根据直角三角形两锐角互余的性质得出CEB=9065=25,再根据平行线的性质即可求出F=CEB=25【详解】(1)在RtABC中,ACB=90,A=40,ABC=90A=50,CBD=130BE是CBD的平分线,CBE=CBD=65;(2)ACB=90,CBE=65,CEB=9065=25DFBE,F=CEB=25【考点】本题考查了三

20、角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义掌握各定义与性质是解题的关键3、【解析】【分析】由于CDAB,CD为RtADC和RtBCD的公共边,在这两个三角形中利用勾股定理可求出AD和BD的长,然后根据三角形面积公式求得即可【详解】解:CDAB,CDA=BDC=90在RtADC中,AD2=AC2CD2,在RtBCD中,BD2=BC2CD2,AC= ,CD=5,BC=13,AD=3,BD=12,AB=15,SABC=ABCD=.【考点】本题考查了勾股定理的运用,根据勾股定理求得AB的长是解题的关键4、(1)见解析(2);理由见解析(3)【解析】【分析】(1)

21、根据ASA证明得BE=BC,得,进一步可得结论;(2)根据ASA证明得BE=BC,得;(3)连结,分别求出AEB=ADE=ACB=225,再证明AE=CD,ADC=90,由勾股定理可得AC,由EC=EA+AC可得结论【详解】解:(1)证明平分,在和中, ;理由:平分,在和中,连结,且,由得,【考点】此题主要考查了全等三角形的判定与性质,勾股定理等知识,连接AD是解答此题的关键5、2【解析】【分析】过点作于点,则,结合可得出,进而可得出,在中,利用勾股定理可求出的长,即,结合可求出的长【详解】解:过点作于点,如图所示,在中,即,又,【考点】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,在中,利用勾股定理求出的长是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1