1、京改版八年级数学上册期末综合练习试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知 ,则 的值是()ABC2D-22、如图,与交于点,则的度数为()ABCD3、下列说法:数轴上的任意一点都表
2、示一个有理数;若、互为相反数,则;多项式是四次三项式;几个有理数相乘,如果负因数有奇数个,则积为负数,其中正确的有()A个B个C个D个4、在四个实数,0,中,最小的实数是()AB0CD5、将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则的度数是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列计算正确的是()ABCD2、如图, AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE下列说法中正确的有()ACEBF;BABD和ACD面积相等;CBFCE;DBDFCDE3、如图,实数a,b在数轴上的对应点在原点两侧,下列各式成立的是()ABCD4、如图
3、,已知,下列结论正确的有()ABCD5、下列运算不正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知有意义,如果关于的方程没有实数根,那么的取值范围是_2、计算:_3、已知,当分别取1,2,3,2020时,所对应值的总和是_4、式子有意义的条件是_5、如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_米四、解答题(5小题,每小题8分,共计40分)1、先观察下列等式,再回答问题:;(1)根据
4、上面三个等式,请猜想的结果(直接写出结果)(2)根据上述规律,解答问题:设,求不超过的最大整数是多少?2、如图,在ABC中,ACB90,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)3、如图,在 ABC 中,AB=AC=2,B=40,点 D 在线段BC 上运动(D 不与 B,C 重合),连接 AD,作 ADE=40,DE 与 AC 交于E (1)当 BDA=115时,BAD= ,DEC= ;当点D 从B 向C 运动时,BDA 逐渐变 (填“大”或“小”);(2)当DC 等于多少时,ABD 与 DCE 全等?请说明理由;(3)在点D 的运
5、动过程中,ADE 的形状可以是等腰三角形吗?若可以,请直接写出 BDA 的度数;若不可以,请说明理由4、如图,在四边形ABCD中,BAD90,点E在AC上,ECEDDA求CAB的度数5、按下列要求解题(1)计算:(2)化简:(3)计算:-参考答案-一、单选题1、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键2、A【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得【详解】故选:A【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键3、C【解析】【分析】数轴上的点
6、可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,所以错误;根据有理数的乘法法则可判断正确【详解】数轴上的点既可以表示有理数,也可以表示无理数,所以错误;若a,b互为相反数则a+b=0,则正确;是常数项,是三次三项式,故错误;根据有理数的乘法法则可判断正确.故正确的有,共2个故选C【考点】本题考查了实数与数轴、相反数、多项式、有理数的乘法,熟记概念是解题的关键4、A【解析】【分析】根据实数比较大小的方法直接求解即可【详解】解:,四个实数,0,中,最小的实数是,故选:A【考点】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对
7、值大的反而小5、C【解析】【分析】根据题意求出、,根据对顶角的性质、三角形的外角性质计算即可【详解】由题意得,由三角形的外角性质可知,故选C【考点】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键二、多选题1、CD【解析】【分析】利用幂的运算法则可判断 利用平方差公式的特点可判断 利用同底数幂的除法判断 利用合并同类项可判断 从而可得答案.【详解】解:,故不符合题意;故不符合题意;故符合题意;故符合题意;故选:【考点】本题考查的是幂的运算,负整数指数幂的含义,平方差公式的应用,合并同类项,掌握以上运算的运算法则是解题的关键.2、ABCD【解析】【分析】
8、根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案【详解】是的中线, ,又 , , ,故D选项正确 , 故A选项正确; BFCE;故C选项正确是的中线, 和等底等高, 和面积相等,故B选项正确;故选:ABCD【考点】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL3、AD【解析】【分析】根据数轴判断出a、b的取值范围,再根据有理数的乘除法,加减法运算对各选项分析判断后利用排除法求解【详解】解:由题意可知,a0b,且|a|b|,A、,故本选项符合题意;B、-ab,故本选项不符合题意;C、a-b0,故本选项符合题意
9、; D、,故本选项符合题意故选:A D【考点】本题考查了实数与数轴,有理数的乘除运算以及有理数的加减运算,判断出a、b的取值范围是解题的关键4、ACD【解析】【分析】只要证明ABEACF,ANCAMB,利用全等三角形的性质即可一一判断【详解】解:在ABE和ACF中,ABEACF(AAS),BAECAF,BECF,ABAC,BAEBACCAFBAC,即12,故C正确;在ACN和ABM中,ACNABM(ASA),故D正确;CNBMCFBE,EMFN,故A正确,CD与DN的大小无法确定,故B错误故选:ACD【考点】本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之
10、间的关系是解题的关键5、ABD【解析】【分析】根据二次根式的性质以及二次根式的运算法则化简和计算可得结果【详解】解:A、,运算不正确,符合题意;B、,运算不正确,符合题意;C、,运算正确,不符合题意;D、,运算错误,符合题意;故选:ABD【考点】本题考查了二次根式的性质以及二次根式的运算,熟练运用运算法则是解本题的关键三、填空题1、【解析】【分析】把方程变形为,根据方程没有实数根可得,解不等式即可【详解】解:由得,有意义,且,方程没有实数根,即,故答案为:【考点】本题考查了二次根式的性质,解题关键是利用二次根式的非负性确定的取值范围2、【解析】【分析】先分别化简负整数指数幂和绝对值,然后再计算
11、【详解】,故填:【考点】本题考查负整数指数幂及实数的混合运算,掌握运算法则准确计算是解题关键3、【解析】【分析】先化简二次根式求出y的表达式,再将x的取值依次代入,然后求和即可得【详解】当时,当时,则所求的总和为故答案为:【考点】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键4、且【解析】【分析】式子有意义,则x-20,x-30,解出x的范围即可.【详解】解:式子有意义,则x-20,x-30,解得:,故答案为且.【考点】此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.5、0.8【解析】【分析】
12、梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形,分别得出AO,A1O的长即可【详解】解:在RtABO中,根据勾股定理知,A1O= =4(m),在RtABO中,由题意可得:BO=1.4(m),根据勾股定理知,AO=4.8(m),所以AA1=AO-A1O=0.8(米)故答案为0.8【考点】本题考查勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用四、解答题1、(1)1;(2)不超过m的最大整数是2019【解析】【分析】(1)由的规律写出式子即可;(2)根据题目中的规律计算即可得到结论【详解】解:(1)观察可得,1;(
13、2)m+1+1+1+12019+(+)2019+(1+)2019+(1)=,不超过m的最大整数是2019【考点】本题主要考查了二次根式的性质与化简,解题的关键是找出规律2、详见解析【解析】【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PDBCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作【考点】此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.3、(1)25,115,小;(2)2,理由见解析;(3)能,110或80【解析】【分析】(1)首先利用三角形内角和为180可算出BAD=180-40-115=25;再利用邻补
14、角的性质和三角形内角和定理可得DEC的度数;(2)当DC=2时,利用DEC+EDC=140,ADB+EDC=140,求出ADB=DEC,再利用AB=DC=2,即可得出ABDDCE(3)当BDA的度数为110或80时,ADE的形状是等腰三角形【详解】解:(1)B=40,ADB=115,BAD=180-40-115=25;ADE=40,ADB=115,EDC=180-ADB-ADE=180-115-40=25DEC=180-40-25=115,当点D从B向C运动时,BDA逐渐变小;故答案为:25,115,小;(2)当DC=2时,ABDDCE,理由:C=40,DEC+EDC=140,又ADE=40,
15、ADB+EDC=140,ADB=DEC,又AB=DC=2,在ABD和DCE中,ABDDCE(AAS);(3)当BDA的度数为110或80时,ADE的形状是等腰三角形,BDA=110时,ADC=70,C=40,DAC=70,ADE的形状是等腰三角形;当BDA的度数为80时,ADC=100,C=40,DAC=40,ADE的形状是等腰三角形当BDA的度数为110或80时,ADE的形状是等腰三角形【考点】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质,关键是要考虑全面,分情况讨论ADE的形状是等腰三角形4、【解析】【分析】根据等腰三角形的性质,等边对等角,又利用平行线的
16、性质可得角度之间的关系,从而可以求解【详解】DECE,ECDCDEDEA是CDE的外角,DEAECDCDE2ECDDEAD,DEADAE,DAE2ECD,CABDCA,DAE2CABBAD90,故答案为:【考点】本题主要考查等腰三角形和平行线的性质,利用等腰三角形和平行线的性质得到角之间的关系是解题的关键5、(1);(2);(3)【解析】【分析】(1)化成最简二次根式后合并即可;(2)先化成最简二次根式,分母有理化后再合并即可;(3)先分子分母因式分解,把除法运算转化成乘法运算,约分即可【详解】(1) =32242=682=22;(2) ; (3) =【考点】本题考查了分式的乘除和二次根式的化简,熟练掌握运算法则是解题的关键