收藏 分享(赏)

2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx

上传人:a**** 文档编号:693319 上传时间:2025-12-13 格式:DOCX 页数:22 大小:447.26KB
下载 相关 举报
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第1页
第1页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第2页
第2页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第3页
第3页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第4页
第4页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第5页
第5页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第6页
第6页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第7页
第7页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第8页
第8页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第9页
第9页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第10页
第10页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第11页
第11页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第12页
第12页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第13页
第13页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第14页
第14页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第15页
第15页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第16页
第16页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第17页
第17页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第18页
第18页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第19页
第19页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第20页
第20页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第21页
第21页 / 共22页
2022年京改版八年级数学上册期末测评试题 卷(Ⅱ)(解析版).docx_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册期末测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列说法正确的是A的平方根是B的算术平方根是4C的平方根是D0的平方根和算术平方根都是02、如图,在中,则的长为()A

2、BCD3、在下列各数中是无理数的有(),(相邻两个之间有个),A个B个C个D个4、给出下列命题,正确的有()个等腰三角形的角平分线、中线和高重合; 等腰三角形两腰上的高相等; 等腰三角形最小边是底边;等边三角形的高、中线、角平分线都相等;等腰三角形都是锐角三角形A1个B2个C3个D4个5、计算的结果是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,BE=CF,AB=DE,添加下列哪些条件不能推证ABCDEF( )ABC=EFBC=FCABDEDA=D2、下列命题中正确的是()A有两个角和第三个角的平分线对应相等的两个三角形全等;B有两条边和第三条边上的中线对应相等的两个三角形

3、全等;C有两条边和第三条边上的高对应相等的两个三角形全等D有两条边和一个角对应相等的两个三角形全等3、知:如图,点P在线段外,且,求证:点P在线段的垂直平分线上在证明该结论时,需添加辅助线,则作法正确的是()A作的平分线交于点CB过点P作于点C且C取中点C,连接D过点P作,垂足为C4、下列计算正确的是()ABCD5、下列命题中是假命题的有()A形状相同的两个三角形是全等形;B在两个三角形中,相等的角是对应角,相等的边是对应边;C全等三角形对应边上的高、中线及对应角平分线分别相等D如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;第卷(非选择题 65分)三、填空题(5小题,每小

4、题5分,共计25分)1、如图,在ABC中,AB=5,AC=13,BC边上的中线AD=6,则ABD的面积是_2、已知,则的值是_3、在中,若两直角边,满足,则斜边的长度是_4、如图,沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,AD与CE相交于点F,若,则_5、若一个数的立方根等于这个数的算术平方根,则这个数是_四、解答题(5小题,每小题8分,共计40分)1、计算:(1);(2).2、如图,在45的正方形网格中,每个小正方形的顶点称为格点,小正方形的边长均为1,点A、B均在格点上,以AB为边画等腰ABC,要求点C在格点上(1)在图、图中画出两种不同形状的等腰三角形ABC(2)格点C的不同位

5、置有 处3、细心观察下图,认真分析各式,然后解答问题,;,;,(1)直接写出:_(2)请用含有(是正整数)的等式表示上述变化规律:_=_,_;(3)求出的值4、已知a2,b2,求下列式子的值:(1)a23abb2;(2)(a1)(b1)5、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,(1)求证:;(2)求的度数-参考答案-一、单选题1、D【解析】【分析】根据一个正数有两个平方根,且这两个平方根互为相反数及平方根的定义即可判断各选项【详解】解:A、的平方根为,故本选项错误;B、-16没有算术平方根,故本选项错误;C、(-4)2=16,16的平方根是4,故本选项错误;D、0的平方

6、根和算术平方根都是0,故本选项正确故选D【考点】本题考查了平方根和算术平方根的定义,一个正数有两个平方根,其中正的平方根称为算术平方根,负数没有平方根,0的平方根和算术平方根都是0.2、B【解析】【分析】根据等腰三角形性质求出B,求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应

7、用,解此题的关键是求出BD和DC的长3、B【解析】【分析】根据无理数是无限不循小数,可得答案【详解】解:,是无理数,故选:B【考点】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数4、B【解析】【详解】解:等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;等腰三角形两腰上的高相等,本选项正确; 等腰三角形最小边不一定底边,故本选项错误;等边三角形的高、中线、角平分线都相等,本选项正确;等腰三角形可以是钝角三角形,故本选项错误,故选B5、A【解析】【详解】原式故选A.二、多选题1、ABD【解析】【分析】根据题目中的条件,可以得到BC=EF,AB=DE,

8、然后即可判断各个选项中添加的条件是否能使得ABCDEF,从而可以解答本题【详解】解:BE=CF,BE+EC=CF+EC,BC=EF,又AB=DE,添加条件BC=EF,根据SS不能判断ABCDEF,故选项A符合题意;添加条件C=F,根据SSA不能判断ABCDEF,故选项B符合题意;添加条件ABDE,可以得到B=DEF,根据(SAS)可判断ABCDEF,故选项C不符合题意;添加条件A=D,根据SSA不能判断ABCDEF,故选项D符合题意;故选:ABD【考点】本题主要考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL2、AB【解析】【分析】结合已知条

9、件和全等三角形的判定方法,对所给的四个命题依次判定,即可解答【详解】A、正确可以用AAS判定两个三角形全等;如图:BB,CC,AD平分BAC,AD平分BAC,且ADAD, BB,CC,BACBAC,AD,AD分别平分BAC,BAC,BADBAD ,ABDABD(AAS),ABAB,在ABC和ABC中, ,ABCABC(AAS)B、正确可以用“倍长中线法”,用SAS定理,判断两个三角形全等,如图, , , ,AD,AD分别为、 的中线,分别延长AD,AD到E,E,使得AD=DE,AD=DE, ,ADCEDB,BE=AC,同理:BE=AC,BE=BE,AE=AE,ABEABE,BAE=BAE,E=

10、E,CAD=CAD,BAC=BAC, , ,BACBACC、不正确因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等D、不正确,必须是两边及其夹角分别对应相等的两个三角形全等故选:AB【考点】本题考查了全等三角形的判定方法,要根据选项提供的已知条件逐个分析,看是否符合全等三角形的判定方法,注意SSA是不能判定两三角形全等的3、ACD【解析】【分析】利用全等三角形的判定对各个选项逐个判断即可得出结论【详解】解:A、利用判断出,点在线段的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不

11、符合题意;C、利用判断出,点在线段的垂直平分线上,符合题意;D、利用判断出,点在线段的垂直平分线上,符合题意;故选:ACD【考点】此题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判定方法是解本题的关键4、CD【解析】【分析】利用幂的运算法则可判断 利用平方差公式的特点可判断 利用同底数幂的除法判断 利用合并同类项可判断 从而可得答案.【详解】解:,故不符合题意;故不符合题意;故符合题意;故符合题意;故选:【考点】本题考查的是幂的运算,负整数指数幂的含义,平方差公式的应用,合并同类项,掌握以上运算的运算法则是解题的关键.5、ABD【解析】【分析】利用全等形的定义、对应角

12、及对应边的定义,全等三角形的性质分别判断后即可确定正确的选项【详解】解:A、形状相同的两个三角形不一定是全等形,原命题是假命题,符合题意;B、在两个全等三角形中,相等的角是对应角,相等的边是对应边,原命题是假命题,符合题意;C、全等三角形对应边上的高、中线及对应角平分线分别相等,正确;原命题是真命题;D、如果两个三角形都和第三个三角形不全等,那么这两个三角形也可能全等,原命题是假命题,符合题意故选:ABD【考点】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推

13、理证实的,这样的真命题叫做定理三、填空题1、15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明ABDCED,所以CE=AB,再利用勾股定理的逆定理证明CDE是直角三角形,即ABD为直角三角形,进而可求出ABD的面积【详解】解:延长AD到点E,使DE=AD=6,连接CE,AD是BC边上的中线,BD=CD,在ABD和CED中,ABDCED(SAS),CE=AB=5,BAD=E,AE=2AD=12,CE=5,AC=13,CE2+AE2=AC2,E=90,BAD=90,即ABD为直角三角形,ABD的面积=ADAB=15故答案为15【考点】本题考查了全等三角形的判定和性质、勾股定理的

14、逆定理的运用,解题的关键是添加辅助线,构造全等三角形2、【解析】【分析】由条件,先求出的值,再根据平方根的定义即可求出的值【详解】解:,故答案为:【考点】本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键3、13【解析】【分析】利用非负数的和为0,求出a与b的值,再利用勾股定理求即可【详解】解:,在中,由勾股定理得c=故答案为:13【考点】本题考查非负数的性质,勾股定理,掌握非负数的性质,勾股定理是解题关键4、123【解析】【分析】根据折叠前后对应角相等和三角形内角和定理可得BAD=BAC=133,ACE=ACB=29,再求出DAC,根据三角形

15、外角的性质可求得m【详解】解:,BAC=180-18-29=133,沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,BAD=BAC=133,ACE=ACB=29,DAC=360-BAD-BAC=94,CFD=ACE+DAC=29+94=123,即m=123,故答案为:123【考点】本题考查三角形内角和定理和外角定理,折叠的性质理解折叠前后对应角相等是解题关键5、0或1【解析】【分析】设这个数为a,由立方根等于这个数的算术平方根可以列出方程,解方程即可求出a【详解】解:设这个数为a,由题意知,=(a0),解得:a=1或0,故答案为:1或0【考点】本题主要考查算术平方根和立方根等知识点,基础题

16、需要重点掌握,同学们很容易忽略a0四、解答题1、 (1)(2)【解析】【分析】(1)先把各二次根式化为最简二次根式得到,然后合并同类二次根式即可;(2)先把各二次根式化为最简二次根式和根据二次根式的乘除法运算得到,然后合并(1)原式;(2)原式【考点】本题考查二次根式的混合运算,解题的关键是掌握二次根式混合运算的相关法则2、(1)见解析;(2)3【解析】【分析】(1)根据等腰三角形的定义,利用勾股定理、数形结合的思想解决问题即可(2)根据画出的图形判断即可【详解】解:(1)所求作的ABC如图所示;(2)在图中再作出符合条件的点C,所以格点C的位置有3处,故答案为3【考点】本题考查了格点中画等腰

17、三角形、等腰三角形的定义、勾股定理,能根据等腰三角形的定义,利用勾股定理、数形结合的思想解决问题是解答的关键3、 (1)(2)(3)【解析】【分析】(1)由给出的数据写出的长即可; (2)由(1)和S1、S2、S3Sn,找出规律即可得出结果; (3)首先求出再求和即可(1)解:; 故答案为:;(2) ,;,;,归纳总结可得: 故答案为:(3), 【考点】本题主要考查勾股定理的理解,实数的运算规律探究,掌握“从具体到一般的探究方法”是解本题的关键4、(1)26;(2)3【解析】【分析】(1)根据完全平方公式的形式对a23abb2变形为,然后代入求值即可;(2)化简(a1)(b1)得,然后代入求值即可【详解】解:(1)a23abb2=,a2,b2,代入得,原式= ;(2)(a1)(b1)=,a2,b2,代入得,原式= 【考点】此题考查了二次根式代数求值,解题的关键是先根据整式的乘法运算法则化简原式5、 (1)证明见解析;(2)【解析】【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出(1)证明:,,AE平分,(2)解:,且,【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1