1、12.4 离散型随机变量及其分布列一、选择题1已知随机变量X的分布列如下表:X12345Pm则m的值为()A. B. C. D.解析 利用概率之和等于1,得m.答案 C 2抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为,则“5”表示的试验结果是()A第一枚6点,第二枚2点B第一枚5点,第二枚1点C第一枚1点,第二枚6点D第一枚6点,第二枚1点解析 第一枚的点数减去第二枚的点数不小于5,即只能等于5,故选D.答案D3离散型随机变量X的概率分布规律为P(Xn)(n1,2,3,4),其中a是常数,则P(X)的值为()A. B.C. D.解析 由()a1.知a1a.故P(X)P(
2、1)P(2).答案 D4设某项试验的成功率为失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X0)的值为()A1 B. C. D.解析设X的分布列为:X01Pp2p即“X0”表示试验失败,“X1”表示试验成功,设失败的概率为p,成功的概率为2p.由p2p1,则p,因此选C.答案C5一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X12)等于()AC102 BC92CC92 DC102解析“X12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P(X12)C92C102.答案D6从4名男生
3、和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数,则P(1)等于()A. B. C. D.解析P(1)1P(2)1.答案D7一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X4)的值为 ()A. B. C. D.解析用完后装回盒中,此时盒中旧球个数X是一个随机变量当X4时,说明取出的3个球有2个旧球,1个新球,P(X4),故选C.答案C二、填空题8随机变量X的分布列如下:X101Pabc其中a,b,c成等差数列,则P(|X|1)_.解析 a,b,c成等差数列,2bac.又abc1,b,P(|X|1)
4、ac.答案 9.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至少命中一次的概率为,则该队员每次罚球的命中率为_解析 由得答案 10设随机变量X的分布列为P(Xi),(i1,2,3,4),则P_.解析PP(X1)P(X2)P(X3).答案11如图所示,A、B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内通过的最大信息总量为,则P(8)_.解析法一由已知的取值为7,8,9,10,P(7),P(8),P(9),P(10),的概率分布列为78910PP(8)P(8)P(9)P(10).法二P(8)1P(7)1.答案12甲、乙两个
5、袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球现分别从甲、乙两袋中各随机抽取2个球,则取出的红球个数X的取值集合是_解析 甲袋中取出的红球个数可能是0,1,2,乙袋中取出的红球个数可能是0,1,故取出的红球个数X的取值集合是0,1,2,3答案 0,1,2,3三、解答题13口袋中有n(nN*)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球记取球的次数为X.若P(X2),求:(1)n的值;(2)X的分布列解析 (1)由P(X2)知,90n7(n2)(n3)n7.
6、(2)X1,2,3,4且P(X1),P(X2),P(X3),P(X4).X的分布列为X1234P14.袋中装着标有数字1,2,3,4,5的小球各2个从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计分介于20分到40分之间的概率解析(1)“一次取出的3个小球上的数字互不相同”的事件记为A,则P(A).(2)由题意知,X有可能的取值为2,3,4,5,取相应值的概率分别为P(X2);P(X3);P(X4);P(X5).所以随机变量X的分布列为:X23
7、45P(3)“一次取球所得计分介于20分到40分之间”的事件记为C,则P(C)P(X3或X4)P(X3)P(X4).15在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X元的概率分布列解析(1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率P.(2)依题意可知,X的所有可能取值为0,10,20,50,60(元),且P(X0),P(X10),P(X20),P(X50),P(X60
8、).所以X的分布列为:X010205060P【点评】 概率、随机变量及其分布列与实际问题的结合题型在新课标高考中经常出现,其解题的一般步骤为:,第一步:理解以实际问题为背景的概率问题的题意,确定离散型随机变量的所有可能值;,第二步:利用排列、组合知识或互斥事件,独立事件的概率公式求出随机变量取每个可能值的概率;,第三步:画出随机变量的分布列;,第四步:明确规范表述结论;16.某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,
9、0.7,0.8,0.9.求在一年内李明参加驾照考试次数X的分布列,并求李明在一年内领到驾照的概率解析X的取值分别为1,2,3,4.X1,表明李明第一次参加驾照考试就通过了,故P(X1)0.6.X2,表明李明在第一次考试未通过,第二次通过了,故P(X2)(10.6)0.70.28.X3,表明李明在第一、二次考试未通过,第三次通过了,故P(X3)(10.6)(10.7)0.80.096.X4,表明李明第一、二、三次考试都未通过,故P(X4)(10.6)(10.7)(10.8)0.024.李明实际参加考试次数X的分布列为X1234P0.60.280.0960.024李明在一年内领到驾照的概率为1(10.6)(10.7)(10.8)(10.9)0.997 6.