1、高二10月月考数学试题说明:本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷第1页至第2页,第卷第3页至第6页。考试时间为120分钟,满分为150分。第卷(选择题,共60分)一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的. 本大题共12小题,每小题5分,共60分.)1. 线段在平面内,则直线与平面的位置关系是A、 B、 C、由线段的长短而定 D、以上都不对2. 按照斜二测画法作水平放置的平面图形的直观图,可能改变的是 A两线段的平行性 B平行于轴的线段的长度C同方向上两线段的比 D角的大小3. 在空间中,a,b是不重合的直线,a,b是不重合的平面,则下列条件中可推出ab的
2、是Aaa,bb,ab Baa,bbCaa,ba Daa,ba 4在ABC中,,若使绕直线旋转一周,则所形成的几何体的体积是A. B. C. D. 5. 下列说法不正确的是A空间中,一组对边平行且相等的四边形是一定是平行四边形;B同一平面的两条垂线一定共面;C过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D过一条直线有且只有一个平面与已知平面垂直. 6. 三棱锥的高为,若三个侧面两两垂直,则为的A内心 B外心 C垂心 D重心 7.若直线平面,直线,则与的位置关系是A、 B、与异面 C、与相交 D、与没有公共点8. 把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,
3、 直线和平面所成的角的大小为A45 B60 C 90 D30 9. 已知某几何体的俯视图是边长为的正方形,主视图与左视图是边长为的正三角形,则其全面积是 A8 B12 C D 10. 长方体,底面是边长为的正方形,高为,则点到截面 的距离为 A B C D 11过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为 A. B. C. D. 12. 正方体ABCDA1B1C1D1中,P在侧面BCC1B1及其边界上运动,且总保持APBD1 ,则动点P的轨迹是 A线段B1C B. BB1中点与CC1中点连成的线段C.线段BC1 D. BC中点与B1C1中点连成的线段考场号座位
4、号准考证号姓 名班 级学 校 密 封 线 内 不 要 答 题 密 封 线 内 不 要 答 题开滦二中12-13学年第一学期高二年级10月考试试题第卷(非选择题共90分)二、填空题:(本题共4小题,每小题5分,共20分。把答案填在题中的横线上)13. 已知A、B、C、D为空间四个点,且A、B、C、D不共面,则直线AB与CD的位置关系是_14.空间四个点P、A、B、C在同一球面上,PA、PB、PC两两垂直,且PA=PB=PC=a,那么这个球面的面积是 15. 若圆锥的表面积是,侧面展开图的圆心角是,则圆锥的体积是_ _。16.棱长为的正四面体内有一点,由点向各面引垂线,垂线段长度分别为,则的值为
5、。三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)。17(本小题满分10分)(如图)在底半径为,母线长为的圆锥中内接一个高为的圆柱,求圆柱的表面积18(本小题满分12分)翰林汇)(本题满分12分)试构造出一个三棱锥SABC,使其四个面中成直角三角形的个数最多,作出图形,指出各面中所有的直角三角形,并证明你的结论。19如图,AC为圆O的直径,AP圆O,PAABBC. (1)证明:面面;(2)若M、N分别为线段PB、PC的中点,试求直线PC与平面AMN所成角的正弦值.密 .封 线 内 禁 止 答 题20. (本题满分12分)如图,在四棱锥中,底面是矩形, 平面,且,
6、点是棱的中点,点在棱上移动.()当点为的中点时,试判断直线与平面的关系,并说明理由;PABCDFE()求证:.21. (本题满分12分)正方体,E为棱的中点() 求证:面() 求三棱锥的体积22(本题满分12分)已知四棱锥PABCD,底面ABCD为矩形,侧棱PA底面ABCD,其中BC2AB2PA6,M,N为侧棱PC上的两个三等分点,如图所示(1) 求异面直线AN与PD所成角的余弦值; (2) 求二面角MBDC的余弦值参考答案ADCD DCDA BCBA13.异面 14. 15. 16. 17.解:解:圆锥的高,圆柱的底面半径, 20. 解:()当点为CD的中点时,平面PAC. 理由如下:点分别为,的中点,. ,平面PAC. 4分(), , . 又是矩形,, ,. , . 8分 ,点是的中点, . 又, . . 12分