1、1若,sin ,则cos()()AB.C. D解析:选B.因为,sin ,所以cos ,即cos().2已知sin()cos(2),|,则等于()A BC.D.解析:选D.sin()cos(2),sin cos ,tan .|,AB0,BA0,sin Asincos B,sin Bsincos A,cos Bsin A0,点P在第二象限3已知cos(75),18090,则tan_解析:由18090,得1057515,故sin(75).而cos(15)cos90(75)sin(75),sin(15)sin90(75)cos(75),所以tan(15).答案:4设函数f(x)sin xcos x,
2、f(x)是f(x)的导数,若f(x)2f(x),则_解析:f(x)sin xcos x,f(x)cos xsin x,sin xcos x2(cos xsin x),即3sin xcos x,得tan x,于是tan2x2tan x.答案:5已知sin 2sin ,tan 3tan ,求cos .解:sin 2sin ,tan 3tan ,sin24sin2,tan29tan2.由得9cos24cos2.由得sin29cos24.又sin2cos21,cos2,cos .6(选做题)已知f(x)(nZ)(1)化简f(x)的表达式;(2)求ff的值解:(1)当n为偶数,即n2k(kZ)时,f(x)sin2x(n2k,kZ);当n为奇数,即n2k1(kZ)时,f(x)sin2x(n2k1,kZ)综上得f(x)sin2x.(2)由(1)得ffsin2sin2sin2sin2sin2cos21.