1、第3节 线性规划的实际应用【基础知识】 1.线性规划也是求值的一种,是求在某种限制范围之下的最大值或最小值的问题,其关键是列出所有的限制条件,不能有遗漏的部分,如有时变量要求为正实数或自然数,其次是准确找到目标函数,如果数量关系多而杂,可以用列表等方法把关系理清.2.线性规划的理论和方法经常被用于两类问题中:一是在人力、物力、资金等资源一定的条件下,如何使用其完成最多的任务;二是给定一项任务,如何合理安排和规划,能用最少的人力、物力、资金等资源来完成这项任务.【规律技巧】(1)明确问题中的所有约束条件,并根据题意判断约束条件中是否能够取到等号 (2)注意结合实际问题的实际意义,判断所设未知数x
2、,y的取值范围,特别注意分析x,y是否是整数、非负数等 (3)正确地写出目标函数,一般地,目标函数是等式的形式【典例讲解】例1、某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?故应配备A型车5辆、B型车12辆,可以满足公司从甲地去乙地的营运成本最小【特别提醒】解线性规划应用问题的一般步骤:(1)
3、分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答【变式探究】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得的最大利润是_万元【答案】27【解析】设生产甲产品x吨、乙产品y吨,则获得的利润为z5x3y.由题意得可行域如图阴影所示由图可知当x、y在A点取值时,z取得最大值,此时x3,y4,z533427(万元)【针对训练】1、某企业生产A、
4、B两种产品,生产每一吨产品所需的劳动力和煤、电耗如下表:产品品种劳动力(个)煤(吨)电(千瓦)A产品394B产品1045已知生产每吨A产品的利润是7万元,生产每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产A、B两种产品各多少吨,才能获得最大利润?2、家具公司制作木质的书桌和椅子,需要木工和漆工两道工序,已知木工平均四个小时做一把椅子,八个小时做一张书桌,该公司每星期木工最多有8000个工作时;漆工平均两小时漆一把椅子、一小时漆一张书桌,该公司每星期漆工最多有1300个工作时,又已知制作一把椅子和一张书桌的利润分别是1
5、5元和20元,试根据以上条件,问怎样安排生产能获得最大利润?【解析】设制作x把椅子,y张桌子约束条件:, 目标函数:z=15x+20y.如图:目标函数经过A点时,z取得最大值 即A(200, 900) 当x=200, y=900时,zmax=15200+20900=21000(元)答:安排生产200把椅子,900张桌子时,利润最大为21000元.综合点评:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.3、某企业生产甲、乙两种产品均需用A,B两种原料已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A12万元 B16万元 C17万元 D18万元甲乙原料限额(吨)(吨)【答案】D