1、第十教时教材:线段的定比分点目的:要求学生理解点P分有向线段所成的比的含义和有向线段的定比分点公式,并能应用解题。过程:一、复习:1向量的加减,实数与向量积的运算法则 2向量的坐标运算 二、提出问题:线段的定比分点1 线段的定比分点及 P1, P2是直线l上的两点,P是l上不同于P1, P2的任一点,存在实数,P1P1P1P2P2P2PPP使 = 叫做点P分所成的比,有三种情况:0(内分) (外分) 0 (-1) ( 外分)0 (-10内分 0外分 -1 若P与P1重合,=0 P与P2重合 不存在 2 中点公式是定比分点公式的特例3 始点终点很重要,如P分的定比= 则P分的定比=24 公式:如
2、 x1, x2, x, 知三求一三、例题:例一 (P114例一) 知三求一 例二 (P114例二) 重心公式例三 若P分有向线段的比为,则A分所成比为(作示意图)OP1PP2P例四 过点P1(2, 3), P2(6, -1)的直线上有一点,使| P1P|:| PP2|=3, 求P点坐标 解:当P内分时=3 当P外分时=-3当=3得P(5,0)当=-3得P(8,-3)例五 ABC顶点A(1, 1), B(-2, 10), C(3, 7) BAC平分线交BC边于D, DBCA求D点坐标解:AD平分角BAC|AC|=|AB|=D分向量所成比=设D点坐标(x, y) 则 D点坐标为:(1,)四、小结:定比分点公式,中点公式五、作业:P115-116 练习 习题5.5