收藏 分享(赏)

备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc

上传人:高**** 文档编号:653515 上传时间:2024-05-29 格式:DOC 页数:17 大小:467.50KB
下载 相关 举报
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第1页
第1页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第2页
第2页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第3页
第3页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第4页
第4页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第5页
第5页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第6页
第6页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第7页
第7页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第8页
第8页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第9页
第9页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第10页
第10页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第11页
第11页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第12页
第12页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第13页
第13页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第14页
第14页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第15页
第15页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第16页
第16页 / 共17页
备战2015高考理数热点题型和提分秘籍 专题77 相似三角形的判定及有关性质-(解析版).doc_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题七十三 离散型随机变量的均值与方差、正态分布【高频考点解读】 1.了解平行线截割定理;2.直角三角形射影定理。【热点题型】题型一 平行线等分线段成比例定理的应用 例1、如图,F为ABCD边AB上一点,连DF交AC于G,延长DF交CB的延长线于E. 求证:DGDEDFEG. 【提分秘籍】利用平行截割定理解决问题,特别注意被平行线所截的直线,找准成比例的线段,得到相应的比例式,有时需要进行适当的变形,从而得到最终的结果【举一反三】如图,在ABC中,DE BC,EFCD,若BC3,DE2,DF1,则AB的长为_ 【热点题型】题型二 相似三角形的判定例2、如图,在ABC中,D、E分别是BC、AB上

2、任意点,EFMCDM,求证:AEFABD. 证明EFMCDM,12,EFBC,AEFABD. 【提分秘籍】判定三角形相似的思路大致有以下几条:(1)已知条件,判定思路;(2)一对等角,再找一对等角或找夹边成比例;(3)两边成比例,找夹角相等;(4)含有等腰三角形,找顶角相等或找一对底角相等或找腰对应成比例【举一反三】如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点ACB和DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:ACBDCE; (2)求证:EFAB. 【热点题型】题型三 相似三角形的性质例3、如图,在RtABC中,ACB90,CDAB,E为AC的中点,ED

3、、CB延长线交于一点F. 求证:FD2FBFC. 【提分秘籍】 运用相似三角形的性质解决问题,主要考虑相似三角形的对应边、对应角、周长、面积之间的关系,多用于求某条线段的长度、求证比例式的存在、求证等积式的成立等,在做题时应注意认真观察图形特点,确定好对应边、对应角等【举一反三】如图,ABC中,ABAC,AD是边BC的中线,P为AD上一点,CFAB,BP的延长线分别交AC,CF于点E,F,求证:BP2PEPF. 【热点题型】题型四 直角三角形射影定理的应用例4、已知圆的直径AB13,C为圆上一点,过C作CD AB于D(ADBD),若CD6,则AD_.答案9 【提分秘籍】利用直角三角形的射影定理

4、解决问题首先确定直角边与其射影,再就是要善于将有关比例式进行适当的变形转化,有时还要将等积式转化为比例式或将比例式转化为等积式,并且注意射影定理的其他变式【举一反三】在ABC中,ACB90,CDAB于D,AD BD23.则ACD与CBD的相似比为_【高考风向标】 1(2014广东卷)(几何证明选讲选做题)如图13所示,在平行四边形ABCD中,点E在AB上且EB2AE,AC与DE交于点F,则_【答案】9【解析】本题考查相似三角形的性质定理,面积比等于相似比的平方EB2AE,AEABCD.又四边形ABCD是平行四边形,AEFCDF,9.【随堂巩固】1如图,在ACE中,B、D分别在AC、AE上,下列

5、推理不正确的是()ABDCEBBDCECBDCEDBDCE解析:选D.由平行线分线段成比例定理易知D错误2如图,ADEFBC,GHAB,则图中与BOC相似的三角形有()A1个B2个C3个 D4个解析:选C.根据相似三角形的预备定理可得,与BOC相似的三角形有EOF,AOD,HGC.3若三角形的三条边之比为357,与它相似的三角形的最长边为21 cm,则其余两边的长度之和为()A24 cm B21 cmC19 cm D9 cm解析:选A.设其余两边的长度分别为x cm,y cm,则,解得x15 cm,y9 cm.故xy24 cm.4如图,ACB90,CDAB于D,AD3,CD2,则ACBC的值是

6、()A32 B94C. D.解析:选A.RtACDRtCBD,.又AD3,CD2,.5如图所示,D、E分别是AB、AC上的点,DEBC,则ADE与四边形DBCE的面积之比为()A. B.C. D.6如图,在ABC中,点D在AB上,点E在AC上,若ADEC,且AB5,AC4,ADx,AEy,则y与x之间的关系式是()Ay5x ByxCyx Dyx7如图,G点是ABC的重心,GEBC,那么AB是BE的()A3倍 B6倍C2倍 D4倍8在ABC中,ACB90,CDAB于D,ADBD23,则ACD与CBD的相似比为()A23 B49C.3 D不确定9如图所示,等腰梯形ABCD的对角线交于点O,则下列四

7、个结论:AOBCOD;AODACB;SDOCSAODCDAB;SAODSBOC.其中正确的个数为()A1 B2C3 D410.如图所示,矩形ABCD中,AB12,AD10,将此矩形折叠使点B落在AD边上的中点E处,则折痕FG的长为()A13 B.C. D.AB12,AEAD105,AD10,BE13.,AH.11如图,在ABCD中,BC24,E、F为BD的三等分点,则BM_,DN_.12如图,在梯形ABCD中,ABCD,AB4,CD2,E,F分别为AD,BC上的点,且EF3,EFAB,则梯形ABFE与梯形EFCD的面积比为_13D、E分别是ABC中AB、AC边上的点,且ADDB12,AE1.5

8、,AC4.5,若直线AM交DE于N,交BC于M,则ANNM_.解析:如图,.又,DEBC.ANNMADDB12. 答案:12 14如图,等边DEF内接于ABC,且DEBC,已知AHBC于H,BC4 cm,AH2 cm,则DEF的边长为_cm.15如图,ABC中,D是BC的中点,M是AD上一点,BM,CM的延长线分别交AC,AB于F,E.求证:EFBC.16如图所示,CD为RtABC斜边AB边上的中线,CECD,CE,连接DE交BC于点F,AC4,BC3.求证: (1)ABCEDC;(2)DFEF.证明:(1)在RtABC中,AC4,BC3,则AB5.D为斜边AB的中点,ADBDCDAB2.5.ABCEDC.17如图,AD,BE是ABC的两条高,DFAB,垂足为F.直线FD交BE于点G,交AC的延长线于H,求证:DF2GFHF.DF2GFHF.18如图,在ABC中, BAC90,AD是BC边上的高,E是BC边上的一个动点(不与B,C重合),EFAB,EGAC,垂足分别为F,G.(1)求证:;(2)FD与DG是否垂直?若垂直,请给出证明;若不垂直,请说明理由;(3)当ABAC时,FDG为等腰直角三角形吗?并说明理由

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3