1、京改版八年级数学上册期末模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,根据图中图形面积之间的关系及勾股定理,可
2、直接得到等式()ABCD2、实数2021的相反数是()A2021BCD3、如图,在中,则的长为()ABCD4、如图,E是AOB平分线上的一点于点C,于点D,连结,则()A50B45C40D255、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,在中,边上的高不是()ABCD2、下列作图语句不正确的是()A作射线AB,使AB=aB作AOB=aC延长直线AB到点C,使AC=B
3、CD以点O为圆心作弧3、下列等式不成立的是()ABCD4、如图,已知,下列结论正确的有()ABCD5、下列说法中,正确的是( )A用同一张底片冲出来的10张五寸照片是全等形;B我国国旗上的四颗小五角星是全等形;C所有的正六边形是全等形D面积相等的两个直角三角形是全等形第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知AOB60,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为_2、+_3、若关于x的方程无解,则m的值为_4、若,则_5、如图,三角形
4、ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DEBC若CEFCHD,EFCADH,CEF:EFC5:2,C47,则ADE的度数为_四、解答题(5小题,每小题8分,共计40分)1、问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_度,_度,_度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,
5、请直接写出,与满足的数量关系式2、(1)计算:;(2)因式分解:.3、如图,高速公路上有A,B两点相距10km,C,D为两村庄,已知DA4km,CB6km,DAAB于点A,CBAB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,求BE的长4、 “说不完的”探究活动,根据各探究小组的汇报,完成下列问题(1)到底有多大?下面是小欣探索的近似值的过程,请补充完整:我们知道面积是2的正方形边长是,且设,画出如下示意图由面积公式,可得_因为值很小,所以更小,略去,得方程_,解得_(保留到0.001),即_(2)怎样画出?请一起参与小敏探索画过程现有2个边长为1的正方形,排列形式如图(
6、1),请把它们分割后拼接成一个新的正方形要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形小敏同学的做法是:设新正方形的边长为依题意,割补前后图形的面积相等,有,解得把图(1)如图所示进行分割,请在图(2)中用实线画出拼接成的新正方形请参考小敏做法,现有5个边长为1的正方形,排列形式如图(3),请把它们分割后拼接成一个新的正方形要求:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形说明:直接画出图形,不要求写分析过程5、(1)解方程:(2)计算:-参考答案-一、单选题1、C【解析】【分析】根据小正方形的面积等于大正方形的面积减去4个直角三角
7、形的面积可得问题的答案【详解】标记如下:,(ab)2a2+b24a22ab+b2故选:C【考点】此题考查的是利用勾股定理的证明,可以完全平方公式进行证明,掌握面积差得算式是解决此题关键2、B【解析】【分析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案【详解】解:2021的相反数是:故选:B【考点】本题主要考查相反数的定义,正确掌握其概念是解题关键3、B【解析】【分析】根据等腰三角形性质求出B,求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,
8、ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长4、A【解析】【分析】根据角平分线的性质得到ED=EC,得到EDC=,求出,利用三角形内角和定理求出答案【详解】解:OE是的平分线,ED=EC, EDC=,故选:A【考点】此题考查了角平分线的性质定理,等腰三角形的性质,三角形内角和定理,熟记角平分线的性质定理是解题的关键5、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及三角形内角和与对顶角,
9、可判断正确;证明AFMBAD(AAS),得出FM=AD,FAM=ABD,则正确,同理ANGCDA,得出NG=AD,则FM=NG,证明FMEGNE(AAS)可得出结论正确【详解】解:BAF=CAG=90,BAF+BAC=CAG+BAC,即CAF=GAB,又AB=AF=AC=AG,CAFGAB(SAS),BG=CF,故正确;FACBAG,FCA=BGA,又BC与AG所交的对顶角相等,BG与FC所交角等于GAC,即等于90,BGCF,故正确;过点F作FMAE于点M,过点G作GNAE交AE的延长线于点N,FMA=FAB=ADB=90,FAM+BAD=90,FAM+AFM=90,BAD=AFM,又AF=
10、AB,AFMBAD(AAS),FM=AD,FAM=ABD,故正确,同理ANGCDA,NG=AD,FM=NG,FMAE,NGAE,FME=ENG=90,AEF=NEG,FMEGNE(AAS)EF=EG故正确故选:D【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识熟练掌握全等三角形的判定与性质是解题的关键二、多选题1、BCD【解析】【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可【详解】解:由图可知,过点A作BC的垂线段即为三角形ABC中BC边的高,则ABC中BC边上的高是AF故BH,CD,EC
11、都不是ABC,BC边上的高,故选BCD【考点】本题主要考查了三角形的高线,是基础题,熟记三角形高的定义是解题的关键2、ACD【解析】【分析】根据射线的性质对A进行判断;根据作一个角等于已知角对B进行判断;根据直线的性质对C进行判断;画弧要确定圆心与半径,则可对D进行判断;【详解】解:A、射线是不可度量的,故本选项错误;B、AOB=,故本选项正确;C、直线向两方无限延伸没有延长线,故本选项错误;D、需要说明半径的长,故选项错误故选:ACD【考点】本题考查了作图-尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图,也考查了直线、射线的性质3、ABC【解析】【分析】根据二次根式的性质以及二次根式
12、的乘除法法则进行判断即可【详解】解:A、 ,当,时,故此选项符合题意;B、 当,时,和没有意义,故此选项符合题意;C、当,时,和没有意义,故此选项符合题意;D、,要使有意义,则,故此选项不符合题意;故选ABC【考点】此题主要考查了二次根式的性质以及二次根式的乘除法,熟练掌握运算法则是解答此题的关键4、ACD【解析】【分析】只要证明ABEACF,ANCAMB,利用全等三角形的性质即可一一判断【详解】解:在ABE和ACF中,ABEACF(AAS),BAECAF,BECF,ABAC,BAEBACCAFBAC,即12,故C正确;在ACN和ABM中,ACNABM(ASA),故D正确;CNBMCFBE,E
13、MFN,故A正确,CD与DN的大小无法确定,故B错误故选:ACD【考点】本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键5、AB【解析】【分析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解【详解】解:A、用同一张底片冲出来的10张五寸照片是全等形,正确;B、我国国旗上的四颗小五角星是全等形,正确;C、所有的正六边形是全等形,错误,正六边形的边长不一定相等;D、面积相等的两个直角三角形是全等形,错误故选:AB【考点】本题考查了全等图形,熟记概念是解题的关键,多边形要注意从角和边两个方面考虑三、填空题1、或【解析】【分析】以
14、O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,则OP为的平分线,以OP为边作,则为作或的角平分线,即可求解【详解】解:以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在内交于点P,得到OP为的平分线,再以OP为边作,则为作或的角平分线,所以或故答案为:或【考点】本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP为边作的两种情况,避免遗漏2、7【解析】【分析】本题涉及平方、三次根式化简2个考点在计算时,需要针对每个考点分别进行计算,然后根据
15、实数的运算法则求得计算结果【详解】解:(3)2+927故答案为7【考点】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握平方、三次根式等考点的运算3、-1或5或【解析】【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】去分母得:,可得:,当时,一元一次方程无解,此时,当时,则,解得:或.故答案为:或或.【考点】此题主要考查了分式方程的解,正确分类讨论是解题关键.4、【解析】【分析】根据实数的性质即可求解【详解】,m0,m=5,故答案为:5【考点】此题主要考查实数的性质,解题的关键是熟知实数的运算性质5、76【解析】【分析】
16、根据平行线的性质和三角形的内角和解答即可【详解】解:CEFCHD,DHGE,ADHG,EFCADH,BFGEFC,GBFG,ABCG+BFG2EFC,CEF:EFC5:2,C47,EFC38,ABC76,DEBC,ADEABC76,故答案为:76【考点】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键四、解答题1、(1)125,90,35;(2)ABP+ACP=90-A,证明见解析;(3)结论不成立ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【解析】【分析】(1)根据三角形内角和即可得出ABC+ACB,PBC+PCB,然后即可得出ABP+
17、ACP;(2)根据三角形内角和定理进行等量转换,即可得出ABP+ACP=90-A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)ABC+ACB=180-A=180-55=125度,PBC+PCB=180-P=180-90=90度,ABP+ACP=ABC+ACB -(PBC+PCB)=125-90=35度;(2)猜想:ABP+ACP=90-A;证明:在ABC中,ABC+ACB180-A,ABC=ABP+PBC,ACB=ACP+PCB,(ABP+PBC)+(ACP+PCB)=180-A,(ABP+ACP)+(PBC+PCB)=180-A,又在RtPBC中,P=90,PBC+
18、PCB=90,(ABP+ACP)+90=180-A,ABP+ACP=90-A(3)判断:(2)中的结论不成立证明:在ABC中,ABC+ACB180-A,ABC=PBC-ABP,ACB=PCB-ACP,(PBC+PCB)-(ABP+ACP)=180-A,又在RtPBC中,P=90,PBC+PCB=90,ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【考点】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.2、(1);(2)【解析】【分析】(1)原式利用零指数幂、负整数指数幂的性质计算即可求出值;(2)原式利用平方差公式分解即可【详解】解:(1)
19、原式;(2)原式;【考点】此题考查了实数运算与因式分解运用公式法,熟练掌握因式分解的方法是解本题的关键3、4km【解析】【分析】根据题意设出BE的长为xkm,再由勾股定理列出方程求解即可【详解】解:设BExkm,则AE(10x)km,由勾股定理得:在RtADE中,DE2AD2+AE242+(10x)2,在RtBCE中,CE2BC2+BE262+x2,由题意可知:DECE,所以:62+x242+(10x)2,解得:x4所以,EB的长是4km【考点】本题考查了勾股定理的应用,熟练掌握勾股定理是解本题的关键4、 (1),;(2)见解析【解析】【分析】(1)根据图形中大正方形的面积列方程即可;(2)在
20、网格中分别找到11和12的长方形,依次连接顶点即可(1)由面积公式,可得值很小,所以更小,略去,得方程,解得(保留到0.001),即故答案为:,;(2)小敏同学的做法,如图:排列形式如图(3),如图:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形,如图所示【考点】本题考查了估算无理数的大小,考查数形结合的思想,根据正方形的面积求出带根号的边长是解题的关键5、(1)原分式方程无解(2)【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)首先将式子通分,化成同分母,分子合并同类项即可【详解】解:(1) 经检验:是增根所以原方程无解(2)原式= =【考点】本题考查了解分式方程和分式的化简,解题的关键是熟练掌握分式方程的解法和分式的化简运算法则