1、京改版八年级数学上册期中综合练习试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、解分式方程时,去分母化为一元一次方程,正确的是()Ax+23Bx23Cx23(2x1)Dx+23(2x1)2、某
2、农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么下列方程正确的是()ABCD3、已知 ,则 的值是()ABC2D-24、若分式在实数范围内有意义,则x的取值范围是()Ax5Bx0Cx5Dx55、 ()AB4CD二、多选题(5小题,每小题4分,共计20分)1、下列说法不正确的是()A的平方根是B负数没有立方根CD1的立方根是2、如果方程有增根,则它的增根可能为()Ax=1Bx=-1Cx=0Dx=33、下列运算中,正确的是()ABCD4、下列计算不正确的是()ABCD5、下列各组数中,不互为相反数的是()A-2与B与C与D 与第卷(非选择题
3、65分)三、填空题(5小题,每小题5分,共计25分)1、计算:_2、7是_的算术平方根3、如果分式有意义,那么x的取值范围是 _4、一个正数a的两个平方根是和,则的立方根为_5、写出一个比大且比小的整数_四、解答题(5小题,每小题8分,共计40分)1、观察下列等式,探究其中的规律:+1,+,+,+,(1)按以上规律写出第个等式:_;(2)猜想并写出第n个等式:_;(3)请证明猜想的正确性2、将下列代数式按尽可能多的方法分类(至少写三种):3、计算:(1);(2)4、班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发苏老师因有事情,8:30从学
4、校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?5、解下列方程(组):(1);(2)-参考答案-一、单选题1、C【解析】【分析】最简公分母是2x1,方程两边都乘以(2x1),即可把分式方程便可转化成一元一次方程【详解】方程两边都乘以(2x1),得x23(2x1),故选C【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根2、A【解析】【分析】设原计划每天挖x米,则实际每天挖(x+20)米,由题意可得等量关系
5、:原计划所用时间-实际所用时间=4,根据等量关系列出方程即可【详解】解:设原计划每天挖x米,原计划所用时间为,实际所用时间为,依题意得:,故选:A【考点】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程3、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键4、A【解析】【分析】根据分式有意义的条件列不等式求解【详解】解:根据分式有意义的条件,可得:,故选:A【考点】本题考查分式有意义的条件,理解分式有意义的条件是分母不能为零是解题关键5、B【解析】【分析】直接利用二次
6、根式的乘法运算法则计算得出答案【详解】解:故选B【考点】此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键二、多选题1、ABD【解析】【分析】根据平方根(若一个实数x的平方等于a,则x是a的平方根)和立方根(若一个实数x的立方等于a,则x是a的立方根)的定义求解【详解】A选项:9,的平方根是,故选项计算错误,符合题意;B选项:如(-1)3=-1,所以-1的立方根是-1,故选项结论错误,符合题意;C选项:,故选项计算正确,不符合题意;D选项:1的立方根是1,故选项计算错误,符合题意故选:ABD【考点】考查立方根以及平方根的定义,解题关键是掌握立方根以及平方根的定义2、AB【解析】【分析
7、】根据分式方程的增根的定义即可得解【详解】解:由题意可得:方程的最简公分母为(x1)(x1),若原分式方程要有增根,则(x1)(x1)0,则x1或x1,故选:AB【考点】本题考查了分式方程的增根,分式方程的增根就是使方程的最简公分母等于0的未知数的值3、CD【解析】【分析】根据合并同类项,完全平方公式,分式的乘除及分式的加减运算进行计算,再判断即可作答【详解】不能再合并同类项了,A选项错误,不符合题意;,B选项错误,不符合题意;,C选项正确,符合题意;,D选项正确,符合题意;故选:CD【考点】本题考查了合并同类项,完全平方公式,分式的乘除及分式的加减运算,熟练掌握运算法则是解题的关键4、ACD
8、【解析】【分析】根据二次根式的性质以及二次根式加法运算法则计算即可【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项符合题意;D、与不是同类二次根式,不能合并,故本选项符合题意;故选ACD【考点】本题考查的是二次根式的性质及二次根式的相关运算法则,熟练掌握是解题的关键.5、ABD【解析】【分析】先化简,然后根据相反数的意义进行判断即可得出答案【详解】解:A. 与不是一组相反数,故本选项符合题意;B. =,所以与 不是一组相反数,故本选项符合题意;C. =2,=-2,所以与是一组相反数,故本选项不符合题意;D. =-2,=-2,所以与不是一组相反数,故本选项符合题意故选
9、ABD【考点】本题考查了相反数,平方根,立方根等知识,能将各数化简并正确掌握相反数的概念是解题关键三、填空题1、2【解析】【分析】先根据负整数指数幂及零指数幂的意义分别化简,再进行减法运算即可【详解】原式=3-1=2,故答案为:2【考点】本题考查负整数指数幂和零指数幂的意义,理解定义是解题关键2、49【解析】【分析】根据算术平方根的定义即可解答.【详解】解:因为=7,所以7是49的算术平方根.故答案为:49【考点】本题主要考查的是算术平方根,属于基础题,要求学生认真读题,熟记概念.3、x1【解析】【分析】根据分式有意义的条件分母不为0,即可解答【详解】若分式有意义,则,解得:故答案为:【考点】
10、本题考查使分式有意义的条件掌握分式的分母不能为0是解题关键4、2【解析】【分析】根据一个正数的平方根互为相反数,将和相加等于0,列出方程,解出b,再将b代入任意一个平方根中,进行平方运算求出这个正数a,将算出后,求立方根即可【详解】和是正数a的平方根,解得 ,将b代入,正数 ,的立方根为:,故填:2【考点】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数5、2(或3)【解析】【分析】先分别求出与在哪两个相邻的整数之间,依此即可得到答案【详解】12,34,比大且比小的整数是2或3故答案为:2(或3)【考点】本题主要考查了实数的大小比较,也考查了无理数的估
11、算的知识,分别求出与在哪两个相邻的整数之间是解答此题的关键四、解答题1、(1)+;(2)+;(3)证明见解析【解析】【分析】(1)仔细观察四个等式,可以发现第一个数的分母为连续的奇数,第二个数的分母为连续的偶数,第三个分母为连续的自然数,据此进一步整理即可得出答案;(2)根据(1)中的规律直接进行归纳总结即可;(3)利用分式的运算法则进行计算验证即可.【详解】(1)观察四个等式,可以发现第一个数的分母为连续的奇数,第二个数的分母为连续的偶数,第三个分母为连续的自然数,第个等式为:+,故答案为:+;(2)根据(1)中规律总结归纳可得:+,故答案为:+;(3)证明:对等式左边进行运算可得:+=,等
12、式右边,左边右边,+成立【考点】本题主要考查了分式运算中数字的变化规律,根据题意正确找出相应的规律是解题关键.2、见详解【解析】【分析】根据整式和分式分类,单项式,多项式,分式分类,单项式二项式,四项式,分式分类,即可【详解】解:整式:分式:;单项式:多项式:分式:;单项式:二项式:四项式:分式:【考点】本题主要考查整式,单项式,多项式的概念,熟练掌握整式,单项式、多项式的定义是解题的关键3、 (1)(2)【解析】【分析】(1)先化简,再合并同类二次根式;(2)先化简括号内二次根式再合并,再利用二次根式乘法计算即可(1)解: ;(2)解:【考点】本题考查了二次根式的混合运算,掌握二次根式的性质
13、是解本题的关键4、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里【解析】【分析】(1)根据“大巴车行驶全程所需时间=小车行驶全程所需时间+小车晚出发的时间+小车早到的时间”列分式方程求解可得;(2)根据“从学校到相遇点小车行驶所用时间+小车晚出发时间=大巴车从学校到相遇点所用时间”列方程求解可得【详解】(1)设大巴的平均速度为x公里/时,则小车的平均速度为1.5x公里/时,根据题意,得:=+解得:x=40经检验:x=40是原方程的解,1.5x=60公里/时答:大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)设苏老师赶上大巴的地点到基地的路程有y公里,根据题意,得:+=5、(1);(2)无解【解析】【分析】(1)用加减消元法解方程组即可;(2)先去分母,把分式方程转化为整式方程,求出方程的解,再进行检验即可【详解】解:(1)+,得6x=18,x=3-,得4y=8,y=2所以原方程组的解为;(2),去分母,得6=3(1+x),去括号,得6=3+3x,移项合并,得3x=3,系数化为1,得x=1经检验,x=1是原方程的增根所以原方程无解【考点】本题考查了解二元一次方程组和解分式方程,能把二元一次方程组转化成一元一次方程是解二元一次方程组的关键,能把分式方程转化成整式方程是解分式方程的关键