收藏 分享(赏)

2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx

上传人:a**** 文档编号:646776 上传时间:2025-12-12 格式:DOCX 页数:25 大小:395.18KB
下载 相关 举报
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第1页
第1页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第2页
第2页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第3页
第3页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第4页
第4页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第5页
第5页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第6页
第6页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第7页
第7页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第8页
第8页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第9页
第9页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第10页
第10页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第11页
第11页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第12页
第12页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第13页
第13页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第14页
第14页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第15页
第15页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第16页
第16页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第17页
第17页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第18页
第18页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第19页
第19页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第20页
第20页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第21页
第21页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第22页
第22页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第23页
第23页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第24页
第24页 / 共25页
2022-2023学年综合复习人教版九年级数学上册期末模拟试题 卷(Ⅱ)(解析版).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末模拟试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y

2、随x的增大而减小,则a的取值范围是()ABCD2、点 A(x,y)在第二象限内,且x=2,y=3,则点A关于原点对称的点的坐标为()A(-2,3)B(2,-3)C(-3,2)D(3,-2)3、一元二次方程x2-3x+10的根的情况是()A没有实数根B有两个相等的实数根C只有一个实数根D有两个不相等的实数根4、已知二次函数y = ax2 + bx + c(a0)的图象如图所示,则下列结论:4a + 2b + c 0;y随x的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个5、对于抛物

3、线,下列说法正确的是()A抛物线开口向上B当时,y随x增大而减小C函数最小值为2D顶点坐标为(1,2)二、多选题(5小题,每小题4分,共计20分)1、古希腊数学家欧几里得在几何原本中记载了用尺规作某种六边形的方法,其步骤是:在O上任取一点A,连接AO并延长交O于点B;以点B为圆心,BO为半径作圆弧分别交O于C,D两点;连接CO,DO并延长分别交O于点E,F;顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE连接AD,EF,交于点G,则下列结论正确的是 AAOE的内心与外心都是点GBFGAFOAC点G是线段EF的三等分点DEFAF2、二次函数(a,b,c是常数,)的自变量x与函数

4、值y的部分对应值如下表:x21012 线 封 密 内 号学级年名姓 线 封 密 外 tm22n已知则下列结论中,正确的是()AB和是方程的两个根CD(s取任意实数)3、下表时二次函数y=ax2+bx+c的x,y的部分对应值:则对于该函数的性质的判断中正确的是()A该二次函数有最大值B不等式y1的解集是x0或x2C方程y=ax2+bx+c的两个实数根分别位于x0和2x之间D当x0时,函数值y随x的增大而增大4、如图,在的网格中,点,均在网格的格点上,下面结论正确的有()A点是的外心B点是的外心C点是的外心D点是的外心5、二次函数y=ax2+bx+c(a0)的顶点坐标为(-1,n),其部分图象如图

5、所示下列结论正确的是()ABC若,是抛物线上的两点,则D关于x的方程无实数根第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,把ABC绕点C顺时针旋转25,得到ABC, AB交AC于点D,若ADC90,则A度数为_ 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,直线yx+6与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一点,连接PA,PB,则PAB面积的最大值为_3、关于的一元二次方程的一个根是2,则另一个根是_4、如图,四边形ABCD内接于O,A=125,则C的度数为_5、二次函数y=ax2+bx+c(a0)图象上部分点的坐标

6、(x,y)对应值列表如下:x-3-2-101y-4-3-4-7-12则该图象的对称轴是_四、解答题(5小题,每小题8分,共计40分)1、为帮助人民应对疫情,某药厂下调药品的价格某种药品经过连续两次降价后,由每盒元下调至元,已知每次下降的百分率相同(1)求这种药品每次降价的百分率是多少?(2)已知这种药品的成本为元,若按此降价幅度再一次降价,药厂是否亏本?2、已知:如图所示,在ABC中,B90,AB5cm,BC7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动(1)如果P、Q分别从A、B同时

7、出发,那么几秒后,PBQ的面积等于4cm2?(2)在(1)中,PQB的面积能否等于7cm2?请说明理由3、解下列方程:(1);(2)4、某商场经营某种品牌的玩具,购进的单价是30元,根据市场调查,在一段时间内,销售单价是40元时,销售量是600元,而销售单价每涨1元,就会少售出10件玩具(1)设该种品牌玩具的销售单价为x元,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获利利润W元;(2)在(1)的条件下,若商场获利了10000元销售利润,求该玩具销售单价x应定为多少元?(3)在(1)的条件下,若玩具厂规定该品牌玩具销售单价不低于45元,且商场要完成不少于480件的销售任务,求商场销售该

8、品牌玩具获利的最大利润是多少元?5、如图,矩形ABCD中,AB2 cm,BC3 cm,点E从点B沿BC以2 cm/s的速度向点C移动,同时点F从点C沿CD以1 cm/s的速度向点D移动,当E,F两点中有一点到达终点时,另一点也停止运动当AEF是以AF为底边的等腰三角形时,求点E运动的时间 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故

9、选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键2、B【解析】【分析】根据A(x,y)在第二象限内可以判断x,y的符号,再根据|x|=2,|y|=3就可以确定点A的坐标,进而确定点A关于原点的对称点的坐标【详解】A(x,y)在第二象限内,x0 y0,又|x|=2,|y|=3,x=-2, y=3,点A关于原点的对称点的坐标是(2,-3)故选:B【考点】本题考查了关于原点对称的点的坐标,由点所在的象限能判断出坐标的符号,同时考查了关于原点对 线 封 密 内 号学级年名姓 线 封 密 外 称的点坐标之间的关系,难度一般3、D【解析】

10、【分析】根据一元二次方程判别式的性质分析,即可得到答案【详解】 x2-3x+10有两个不相等的实数根故选:D【考点】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解4、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项【详解】当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c0,故正确;因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y

11、随x的增大而增大,故错误;由二次函数y=ax2+bx+c(a0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根,且正根的绝对值较大,方程ax2+bx+c=0两根之和大于零,故错误;由图象开口向上,知a0,与y轴交于负半轴,知c0,由对称轴,知b0,bc0,一次函数y=ax+bc的图象一定经过第二象限,故错误;综上,正确的个数为1个,故选:D【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键5、B【解析】【分析】根据二次函数图象的性质对各项进行分析判断即可【详解】解:抛物线解析式

12、可知,A、由于,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为,结合其开口方向向下,可知当时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、抛物线顶点坐标为(-1,-2),选项不符合题意故选:B【考点】本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、顶点坐标以及二次函数图象的增减性解题 线 封 密 内 号学级年名姓 线 封 密 外 二、多选题1、ABC【解析】【分析】证明AOE是等边三角形,EFOA,ADOE,可判断A;证明AGF=AOF=60,可判断B;证明FG=2GE,可判断C;

13、证明EF=AF,可判断D【详解】解:如图,在正六边形AEDBCF中,AOF=AOE=EOD=60,OF=OA=OE=OD,AOF,AOE,EOD都是等边三角形, AF=AE=OE=OF,OA=AE=ED=OD,四边形AEOF,四边形AODE都是菱形,ADOE,EFOA,AOE的内心与外心都是点G,故A正确,EAF=120,EAD=30,FAD=90,AFE=30,AGF=AOF=60,故B正确,GAE=GEA=30,GA=GE,FG=2AG,FG=2GE,点G是线段EF的三等分点,故C正确,AF=AE,FAE=120,EF=AF,故D错误,故答案为:ABC【考点】本题考查作图-复杂作图,等边三

14、角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形2、BC【解析】【分析】由表中数据,结合二次函数的对称性,可知,二次函数的对称轴为,结合抛物线对称轴为:,得出,由,结合二次函数图象性质,逐一分析各个选项,即可作出相应的判断【详解】解:由表格数据可知,当时,将点代入中,可得由表格数据可知,当时,;当时,; 线 封 密 内 号学级年名姓 线 封 密 外 即抛物线对称轴为:,抛物线对称轴为:,化简得,抛物线解析式化为,将点代入中,化简得,解得,故A选项说法错误,不符合题意;二次函数对称轴为,和时,对应的函数值相等,时,对应函数值为,

15、和是方程的两个根,故B选项说法正确,符合题意;由表中数据可知,二次函数过点和,将点和分别代入二次函数解析式中,可得,故,C选项说法正确,符合题意;,即,s取任意实数,故D选项说法错误,不符合题意;故选:BC【考点】本题考查了二次函数的图象性质,二次函数与一元二次方程的关系,深入理解函数概念,熟练掌握二次函数图象性质是解题的关键3、BC【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a0,即可判断A,D不正确,由图表可直接判断B,C正确【详解】解:当x=0时,y=-1;当x=2时,y=-1;当x=,y=;当x=,y=;二

16、次函数y=ax2+bx+c的对称轴为直线x=1,x1时,y随x的增大而增大,x1时,y随x的增大而减小a0即二次函数有最小值则A,D错误由图表可得:不等式y-1的解集是x0或x2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于-x0和2x之间;所以选项B,C正确,故选:BC【考点】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值,理解图表中信息是本题的关键4、ABCD【解析】【分析】连接HB、HD,利用勾股定理可得,则根据三角形外心的定义可对四个选项进行判断【详解】解:如图,连接HB、HD,根据勾股定理可得:,点是的外心,点是的外心,点是的外心,点是的外心,ABCD都是正

17、确的故选:ABCD【考点】本题考查了三角形的外心和勾股定理的应用,熟练掌握三角形的外心到三角形的三个顶点的距离相等是解决本题的关键5、CD【解析】【分析】根据二次函数的性质及与x轴另一交点的位置,即可判定A;当x=2时,即可判定B;根据对称性及二次函数的性质,可判定C;根据平移后与x轴有无交点,可判定D【详解】解:由图象可知:该二次函数图象的对称轴为直线,b=2a,由图象可知:该二次函数图象与x轴的左侧交点在-3与-2之间,故与x轴的另一个交点在0与1之间,当x=1时,y0,即a+b+c0,3a+c0,即4a-2b+c0,故B错误; 线 封 密 内 号学级年名姓 线 封 密 外 点关于对称轴对

18、称的点的坐标为,即,在对称轴的左侧y随x的增大而增大,故,故C正确;该二次函数的顶点坐标为(1,n),将函数向下平移n+1个单位,函数图象与x轴无交点,方程无实数根,故D正确,故选:CD【考点】本题考查了二次函数图象与性质,根据二次函数的图象判定式子是否成立,解题的关键是从图象中找到相关信息三、填空题1、65【解析】【分析】根据旋转的性质,可得知,从而求得的度数,又因为的对应角是,即可求出的度数【详解】绕着点时针旋转,得到,的对应角是故答案为:【考点】此题考查了旋转的性质,解题的关键是正确确定对应角2、32【解析】【分析】如图,作CHAB于H交O于E、F,求出A、B的坐标,根据勾股定理求出AB

19、,再由SABCABCHOBAC求出点C到AB的距离CH,即可求出圆C上点到AB的最大距离,根据面积公式求出即可【详解】如图,作CHAB于H交O于E、F,直线yx+6与x轴、y轴分别交于A、B两点,当y=0时,可得0=x+6,解得:x=8,A(8,0),当x=0时,得y=6,B(0,6),OA8,OB6, 线 封 密 内 号学级年名姓 线 封 密 外 10,C(1,0),AC=8+1=9,SABCABCHOBAC,CH=5.4,FHCH+CF=5.4+16.4,即C上到AB的最大距离为6.4,PAB面积的最大值106.432,故答案为32【考点】本题考查了三角形的面积,勾股定理、三角形等面积法求

20、高、求圆心到直线的距离等知识,解此题的关键是求出圆上的点到直线AB的最大距离3、-3【解析】【分析】由题意可把x=2代入一元二次方程进行求解a的值,然后再进行求解方程的另一个根【详解】解:由题意把x=2代入一元二次方程得:,解得:,原方程为,解方程得:,方程的另一个根为-3;故答案为-3【考点】本题主要考查一元二次方程的解及其解法,熟练掌握一元二次方程的解及其解法是解题的关键4、55#55度【解析】【分析】根据圆内接四边形的性质得出A+C=180,再求出答案即可【详解】解:四边形ABCD内接于O,A+C=180,A=125,C=180-125=55,故答案为:55【考点】本题考查了圆内接四边形

21、的性质和圆周角定理,能熟记圆内接四边形的对角互补是解此题的关键5、【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴【详解】解:由表格可得,当x取-3和-1时,y值相等, 线 封 密 内 号学级年名姓 线 封 密 外 该函数图象的对称轴为直线,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答四、解答题1、(1);(2)不亏本,见解析【解析】【分析】(1)设这种药品每次降价的百分率是,根据该药品的原价及经过两次降价后的价格,即可得出关于的一元二次方程,求解即可得出结论;(2)根据经过连续三次

22、降价后的价格=经过连续两次降价后的价格(1-20%),即可求出再次降价后的价格,将其与100元进行比较后即可得出结论【详解】(1)解:设每次下降的百分率为, 依题意,得: ,解得:(不合题意,舍去)答:这种药品每次降价的百分率是20%;(2)128(1-20%)=102.4,102.4100,按此降价幅度再一次降价,药厂不会亏本【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键2、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒钟,PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2c

23、m/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看PBQ的面积能否等于7cm2,只需令2x(5x)7,化简该方程后,判断该方程的与0的关系,大于或等于0则可以,否则不可以【详解】解:(1)设经过x秒以后PBQ面积为4cm2,根据题意得(5x)2x4,整理得:x25x+40,解得:x1或x4(舍去)答:1秒后PBQ的面积等于4cm2;(2)由(1)同理可得(5x)2x7整理,得x25x+70,因为b24ac25280,所以,此方程无解所以PBQ的面积不可能等于7cm2【考点】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个

24、值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在3、(1),;(2), 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】解:(1),a=3,b=4,c=1, ,;(2)【考点】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要

25、针对不同的方程选取恰当的方法是解题关键4、(1),;(2)50元或80元;(3)商场销售该品牌玩具获利的最大利润是10560元【解析】【分析】(1)根据销售量与销售单价之间的变化关系就可以直接求出y与x之间的关系式;根据销售问题的利润=售价-进价就可以表示出w与x之间的关系;(2)根据题意得方程求得x1=50,x2=80,于是得到结论;(3)根据销售单价不低于45元且商场要完成不少于480件的销售任务求得45x52,根据二次函数的性质得到当45x52时,y随x增大而增大,于是得到结论【详解】解:(1)依等量关系式“销量=原销量-因涨价而减少销量,总利润=单个利润销量”可列式为: y=600-1

26、0(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由题意可得:10+1300x30000=10000,解得:x=50或x=80,该玩具销售单价x应定为50元或80元(3)由题意可得:,解得:45x52,W=10+1300x30000=10(+12250,100,W随x的增大而减小,又45x52,当x=52时,W有最大值,最大值为10560元,商场销售该品牌玩具获利的最大利润是10560元【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了一元二次方程的解法的运用,二次函数的解析式的运用,二次函数的顶点式的运用,解答时求出二次函数的解析式是关键5、(6)s【解析】【分析】设点E运动的时间是x秒根据题意可得方程,解方程即可得到结论【详解】解:设点E运动的时间是x s根据题意可得22(2x)2(32x)2x2,解这个方程得x16,x26,321.5(s),212(s),两点运动了1.5s后停止运动x6答:当AEF是以AF为底边的等腰三角形时,点E运动的时间是(6)s【考点】本题考查了一元二次方程的应用,考查了矩形的性质,等腰三角形的判定及性质,勾股定理的运用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1