1、北师大版八年级数学上册第一章勾股定理综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在22的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使ABC为直角三角形的概率是()
2、ABCD2、在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A4B5C6D73、如图,长方体的底面边长分别为2cm和3cm,高为6cm如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A11cmB2cmC(8+2)cmD(7+3)cm4、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上若再选择一个格点C,使ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D65、如图,由6个相同小正方形组成的网格中
3、,A,B,C均在格点上,则ABC 的度数为()A45B50C55D606、ABC的三边长a,b,c满足+(b12)2+|c13|0,则ABC的面积是()A65B60C30D267、如图,正方形ABCD中,AB12,将ADE沿AE对折至AEF,延长EF交BC于点G,G刚好是BC边的中点,则ED的长是()A2B3C4D58、如图,ABC中,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示的长方形中,若要求图中两个阴影部分面积之和,则只需知道()A以BC为边的正方形面积B以AC为边的正方形面积C以AB为边的正方形面积DABC的面积9、如图,在水塔O的东北方向24m处有一抽水站A,在水塔的 东
4、南方向18m处有一建筑工地B,在AB间建一条直水管,则 水管AB的长为()A40mB45mC30mD35m10、如图,在矩形ABCD中,AB4,BC6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、图,在菱形ABCD中,是锐角,于点E,M是AB的中点,连接MD,若,则的值为_2、我国古代数学著作九章算术中的一个问题:一根竹子高 1 丈(1 丈=10 尺),折断后顶端落在离竹子底端 3 尺处,问折断处离地面的高度为多少尺?如图,设折断处离地面的高度为 x 尺,根据题意,可列
5、出关于 x 方程为:_. 3、如图,在中,现将沿进行翻折,使点刚好落在上,则_4、如图,台风过后,某希望小学的旗杆在离地某处断裂,且旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部_m位置断裂5、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了_米三、解答题(5小题,每小题10分,共计50分)1、已知:在中,点在直线上,点在同一条直线上,且,【问题初探】(1)如图1,若平分,求证:请依据以下的简易思维框图,写出完整的证明过程【变式再探】(2)如图2,若平分的外角,交的延长线
6、于点,问:和的数量关系发生改变了吗?若改变,请写出正确的结论,并证明;若不改变,请说明理由【拓展运用】(3)如图3,在的条件下若,求的长度2、如图所示,已知ABC中,B90,AB16cm,BC12cm,P、Q是ABC边上的两个动点,其中点P从点A开始沿AB方向运动,且速度为每秒1cm,点Q从点B开始沿BCA方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts(1)出发3s后,求PQ的长;(2)当点Q在边BC上运动时,出发多久后,PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使BCQ成为等腰三角形的运动时间3、如图,点是正方形内一点,将绕点顺时针旋转到的位置,若,求的度数4
7、、如图,已知半径为5的M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分OAM,AOCO6(1)判断M与x轴的位置关系,并说明理由;(2)求AB的长;(3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式5、如图,AD是ABC的中线,DEAC于点E,DF是ABD的中线,且CE=2,DE=4,AE=8(1)求证:;(2)求DF的长-参考答案-一、单选题1、C【解析】【分析】找到可以组成直角三角形的点,根据概率公式解答即可【详解】解:如图,均可与点和组成直角三角形,故选:C【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出
8、现种结果,那么事件的概率(A)2、A【解析】【详解】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A【考点】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和这里,边的平方的几何意义就是以该边为边的正方形的面积3、B【解析】【详解】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果解:将长方体展开,连接AB,则AB最短.AA=3+2+3+2=10cm,AB=6 cm,AB=cm.故选B.4、D【解析】【分析】分三种情况讨论,当A=90,或B=90,或C=90时,
9、分别画出符合条件的图形,即可解答【详解】解:分三种情况讨论,当A=90,或B=90,或C=90如图 符合条件的格点C的个数是6个故选:D【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90等知识,是基础考点,掌握相关知识是解题关键5、A【解析】【分析】连接AC,利用勾股定理分别求出AB、AC、BC,根据勾股定理的逆定理得到ABC是等腰直角三角形,ACB=90,再根据三角形内角和定理得到答案【详解】连接AC,AC=BC,ABC是等腰直角三角形,ACB=90,ABC= (180-ACB)=45故选A【考点】本题考查了等腰三角形,勾股定理的逆定理,解决问题的关键是作辅助
10、线构建三角形,熟练掌握等腰三角形的定义和性质,熟练运用勾股定理的逆定理判断直角三角形6、C【解析】【分析】首先根据非负数的性质可得a-5=0,b-12=0,c-13=0,进而可得a、b、c的值,再利用勾股定理逆定理证明ABC是直角三角形,最后由直角三角形面积公式求解即可【详解】解:+(b-12)2+|c-13|=0,a-5=0,b-12=0,c-13=0,a=5,b=12,c=13,52+122=132,ABC是直角三角形,SABC=30故选:C【考点】此题主要考查了非负数的性质,以及勾股定理逆定理,熟练掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,利用非
11、负数性质求出a、b、c的值是解题的关键7、C【解析】【分析】连接AG,证明ABGAFG,得到FGBG,ADE沿AE对折至AEF,则EFDE,设DEx,则EFx,EC12x,则RtEGC中根据勾股定理列方程可求出DE的值【详解】如图,连接AG,四边形ABCD是正方形,ABCD90,ABBCCDAD12ADE沿AE对折至AEF,EFDE,AFAD,AFAD,ABAD,AFAB,又AG是公共边,ABGAFG(HL),G刚好是BC边的中点,BGFG, 设DEx,则EFx,EC12x,在RtEGC中,根据勾股定理列方程:62(12x)2(x6)2解得:x4所以ED的长是4,答案选C【考点】本题考查了正方
12、形和全等三角形的综合知识,根据勾股定理列方程是本题的解题关键8、D【解析】【分析】如图所示,过点C作CNAB于N,延长AB、BA分别交正方形两边于H、E,证明ADECAN得到,AE=CN同理可证BGHCBN,得到,BH=CN,则,即可推出由此即可得到答案【详解】解:如图所示,过点C作CNAB于N,延长AB、BA分别交正方形两边于H、E,CNA=DEA=DAC=90,DAE+EDA=DAE+CAN=90,ADE=CAN,又AD=CA,ADECAN(AAS),AE=CN同理可证BGHCBN,BH=CN, ,只需要知道ABC的面积的面积即可求出阴影部分的面积,故选D【考点】本题主要考查了全等三角形的
13、性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形9、C【解析】【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可【详解】解:OA是东北方向,OB是东南方向,AOB=90,又OA=24m,OB=18m,30m故选:C【考点】本题考查的知识点是解直角三角形的应用,正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键10、C【解析】【分析】连接BF,(见详解图),由翻折变换可知,BFAE,BE=EF,由点E是BC的中点,可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而
14、可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BFAEF是由ABE沿AE折叠得到的,BFAE,BE=EFBC=6,点E为BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为:【考点】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质,对应点的连线被折痕垂直平分二、填空题1、【解析】【分析】延长DM交CB的延长线于点首先证明,设,利用勾股定理构建方程求出x即可解决问题【详解】延长DM
15、交CB的延长线于点H,四边形ABCD是菱形,设,或舍弃,故答案为【考点】本题考查了菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,正确添加辅助线,构造全等三角形解决问题是解决本题的关键2、【解析】【分析】设折断处离地面的高度为 x 尺,根据勾股定理列出方程即可【详解】解:设折断处离地面的高度为 x 尺,根据题意可得:故答案为:【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键3、【解析】【详解】解:设CD=x,则AD=AD=4-x在直角三角形ABC中,BC=5则AC=BC-AB=BC-AB=5-3=2在直角三角形ADC中:AD2+AC2=CD2即:(4-x)
16、2+22=x2解得:x=故答案为:2.54、6【解析】【分析】设,则,在中,利用勾股定理列方程,即可求解【详解】解:如图,由题意知,设,则,在中,即,解得,因此旗杆在离底部6m位置断裂故答案为:6【考点】本题考查勾股定理的实际应用,读懂题意,根据勾股定理列出方程是解题的关键5、9【解析】【分析】在RtABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长【详解】在RtABC中:CAB90,BC17米,AC8米,AB15(米),CD10(米),AD6(米),BDABAD1569(米),答:船向岸边移动了9米,故答案为:9【考点
17、】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用三、解答题1、(1)见解析(2);理由见解析(3)【解析】【分析】(1)根据ASA证明得BE=BC,得,进一步可得结论;(2)根据ASA证明得BE=BC,得;(3)连结,分别求出AEB=ADE=ACB=225,再证明AE=CD,ADC=90,由勾股定理可得AC,由EC=EA+AC可得结论【详解】解:(1)证明平分,在和中, ;理由:平分,在和中,连结,且,由得,【考点】此题主要考查了全等三角形的判定与性质,勾股定理等知识,连接AD是解答此题的关键2、 (1)PQcm(2)出发秒后PQ
18、B能形成等腰三角形(3)当t为11秒或12秒或13.2秒时,BCQ为等腰三角形【解析】【分析】(1)可求得AP和BQ,则可求得BP,由勾股定理即可得出结论;(2)用t可分别表示出BP和BQ,根据等腰三角形的性质可得到BP=BQ,可得到关于t的方程,可求得t;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值(1)当t3时,则AP3,BQ2t6,AB16cm,BPABAP16313(cm),在RtBPQ中,PQ(cm)(2)由题意可知APt,BQ2t,AB16,BPABAP16t,当PQB为等腰三角形时,则有BP
19、BQ,即16t2t,解得t,出发秒后PQB能形成等腰三角形;(3)当CQBQ时,如图1所示,则CCBQ,ABC90,CBQ+ABQ90A+C90,AABQ,BQAQ,CQAQ10,BC+CQ22,t22211秒当CQBC时,如图2所示,则BC+CQ24,t24212秒当BCBQ时,如图3所示,过B点作BEAC于点E,则BE,CE,CQ2CE14.4,BC+CQ26.4,t26.4213.2秒综上所述:当t为11秒或12秒或13.2秒时,BCQ为等腰三角形【考点】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t表示出相应线段的长,化“动”为“静”是解决这类问题的一般思
20、路,注意方程思想的应用3、【解析】【分析】连接EE,如图,根据旋转的性质得BE=B E=2,AE=C E=1,EBE=90,则可判断BEE为等腰直角三角形,根据等腰直角三角形的性质得EE= BE=2,BEE=45,在CE E中,由于CE +E E=CE,根据勾股定理的逆定理得到CEE为直角三角形,即EEC=90,然后利用B EC=B EE+C EE求解【详解】连接EE,如图,ABE绕点B顺时针旋转90得到CBEBE=BE=2,AE=CE=1,EB E=90BE E为等腰直角三角形E E=BE=2,BEE=45在CEE中,CE=3,C E=1,EE=2,1+ (2)=3CE+E E= CECE
21、E为直角三角形E EC=90B EC=B EE+C EE=135【考点】此题考查了等腰直角三角形,勾股定理的逆定理,正方形的性质和旋转的性质,利用勾股定理证明三角形是直角三角形是解题关键4、 (1)M与x轴相切,理由见解析(2)6(3)【解析】【分析】(1)连接CM,证CMx即可得出结论;(2)过点M作MNAB于N,证四边形OCMN是矩形,得MN=OC,ON=OM=5,设AN=x,则OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂径定理得AB=2AN即可求解;(3)连接BC,CM,过点D作DPCM于P,得直角三角形BCD,由(2)知:AB=6,OA
22、=2,OC=4,所以OB=8,C(4,0),在RtBOC中,BOC=90,由勾股定理,求得BC=,在RtBCD中,BCD=90,由勾股定理,即可求得CD,在RtCPD和在RtMPD中,由勾股定理,求得CP=2,PD=4,从而得出点D坐标,然后用待定系数法求出直线CD解析式即可(1)解:M与x轴相切,理由如下:连接CM,如图,MC=MA,MCA=MAC,AC平分OAM,MAC=OAC,MCA=OAC,OAC+ACO=90,MCO=MCA+ACO=OAC+ACO=90,MC是M的半径,点C在x轴上,M与x轴相切;(2)解:如图,过点M作MNAB于N,由(1)知,MCO=90,MNAB于N,MNO=
23、90,AB=2AN,CON=90,CMN=90,四边形OCMN是矩形,MN=OC,ON=CM=5,OA+OC=6,设AN=x,OA=5-x,MN=OC=6-(5-x)=1+x,在RtMNA中,MNA=90,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合题意,舍去),AN=3,AB=2AN=6;(3)解:如图,连接BC,CM,过点D作DPCM于P,由(2)知:AB=6,OA=2,OC=4,OB=8,C(4,0)在RtBOC中,BOC=90,由勾股定理,得BC=,BD是M的直径,BCD=90,BD=10,在RtBCD中,BCD=90,由勾股定理,得CD=,即CD2=20
24、,在RtCPD中,由勾股定理,得PD2=CD2-CP2=20-CP2,在RtMPD中,由勾股定理,得PD2=MD2-MP2=MD2-(MC-CP)2=52-(5-CP)2=10CP-CP2,20-CP2=10CP-CP2,CP=2,PD2=20-CP2=20-4=16,PD=4,即D点横坐标为OC+PD=4+4=8,D(8,-2),设直线CD解析式为y=kx+b,把C(4,0),D(8,-2)代入,得,解得:,直线CD的解析式为:【考点】本题考查直线与圆相切的判定,勾股定理,圆周角定理的推论,垂径定理,待定系数法求一次函数解析式,熟练掌握直线与圆相切的判定、待定系数法求一次函数解析式的方法是解
25、题的关键5、 (1)见解析(2)DF的长为5【解析】【分析】(1)利用勾股定理的逆定理,证明ADC是直角三角形,即可得出ADC是直角;(2)根据三角形的中线的定义以及直角三角形的性质解答即可(1)证明:DEAC于点E,AED=CED=90,在RtADE中,AED=90,AD2=AE2+DE2=82+42=80,同理:CD2=20,AD2+CD2=80+20=100,AC=AE+CE=8+2=10,AC2=100,AD2+CD2=AC2,ADC是直角三角形,ADC=90;(2)解:AD是ABC的中线,ADC=90,AD垂直平分BC,AB=AC=10,在RtADB中,ADB=90,点F是边AB的中点,DF=AB=5DF的长为5【考点】本题主要考查了直角三角形的性质与判定,垂直平分线的判定和的性质,熟记勾股定理与逆定理是解答本题的关键