1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末模拟试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A
2、1个B2个C3个D4个2、点 A (2,-1)关于 y 轴对称的点 B 的坐标为()A(2, 1)B(-2,1)C(2,-1)D(-2,- 1)3、已知 ,则 的值是()ABC2D-24、下列运算正确的是()ABCD5、计算的结果为16,则m的值等于()A7B6C5D4二、多选题(5小题,每小题4分,共计20分)1、下列不是真命题的是()A如果 ab,ac,那么 bcB相等的角是对顶角C一个角的补角大于这个角D一个三角形中至少有两个锐角2、下列各式,能用平方差公式计算的是()A(x2y)(2yx)B(x2y)(x2y)C(x2y)(x2y)D(x2y)(x2y)3、将一个等腰直角三角形按图示方
3、式依次翻折,若DE1,则下列说法正确的有()ADF平分BDEBBC长为CB FD是等腰三角形DCED的周长等于BC的长4、已知关于x的分式方程无解,则m的值为()A0BCD5、下列每组中的两个图形,不是全等图形的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,伸缩晾衣架利用的几何原理是四边形的_2、计算_3、分解因式=_4、(1)_;(2)_;(3)_;(4)_5、分解因式:_.四、解答题(5小题,每小题8分,共计40分)1、计算:(1)()3()2(2)()2、如图,在ABC中,AB=AC,AEAB于
4、A,BAC=120,AE=3cm求BC的长3、如图,一个三角形的纸片ABC,其中A=C,(1)把ABC纸片按 (如图1) 所示折叠,使点A落在BC边上的点F处,DE是折痕说明 BCDF;(2)把ABC纸片沿DE折叠,当点A落在四边形BCED内时 (如图2),探索C与1+2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时 (如图3),探索C与1、2之间的大小关系.(直接写出结论)4、如图,在中,已知是边上的中线,是上一点,且,延长交于点,求证: 线 封 密 内 号学级年名姓 线 封 密 外 5、图、图均是66的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC
5、的顶点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图(1)在图中的线段AB上找一点D,连结CD,使BCD BDC(2)在图中的线段AC上找一点E,连结BE,使EAB EBA-参考答案-一、单选题1、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.2、D【解析】【分析】根据点坐标关于轴对称的变
6、换规律即可得【详解】解:点坐标关于轴对称的变换规律:横坐标互为相反数,纵坐标相同则点关于轴对称的点的坐标为,故选:D【考点】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键3、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键4、B【解析】【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可【详解】解:A. ,故本选项不符合题意;B,正确,故本选项符合题意;C,故本选项不合题意;
7、D,故本选项不合题意故选:B【考点】本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键5、A【解析】【分析】根据幂的运算公式即可求解【详解】=16=24则2m-3-m=4解得m=7故选A【考点】此题主要考查幂的运算及应用,解题的关键是熟知幂的运算法则二、多选题1、ABC【解析】【分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可【详解】解:A、如果 ab,ac,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、一个三角形中至少有两个锐角,原命题是真命题;故选:ABC 线 封 密
8、 内 号学级年名姓 线 封 密 外 【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属于基础知识,难度不大2、AB【解析】【分析】根据平方差公式的形式判断即可;【详解】(x2y)(2yx),能用平方差公式,故A正确;(x2y)(x2y),能用平方差公式,故B正确;(x2y)(x2y),不能用平方差公式,故C错误;(x2y)(x2y),不能用平方差公式,故D错误;故选AB【考点】本题主要考查了平方差公式的判断,准确分析判断是解题的关键3、BCD【解析】【分析】由和等腰直角三角形,可推出,进一步由角度关系得到,结合,可得到,即可判断出A、C是否正
9、确;通过分析可以得到,从而在中,得到长度,进一步求得的周长和BC的长度,即可判断B、D是否正确【详解】解:是等腰直角三角形,且 折叠 ,折叠 , 不是的角平分线,选项A错误 是等腰三角形,选项C正确 线 封 密 内 号学级年名姓 线 封 密 外 又 的周长等于的长,所以选项B、D正确故选:BCD【考点】本题考查等腰三角形的性质,直角三角形互余,三角形外角性质以及三角形全等性质等知识点,根据知识点解题是关键4、ABD【解析】【分析】先将分式方程化为整式方程 ,再由原分式方程无解,可得 或 ,即可求解【详解】解:化为整式方程,得: ,即 ,关于x的分式方程无解, 或 ,当时, ,当,即或 时, 或
10、 ,解得: 或 故选:ABD【考点】本题主要考查了分式方程无解的问题,理解并掌握分式方程无解分为两种情况:分式方程产生增根;整式方程本身无解是解题的关键5、ABD【解析】【分析】根据全等形的定义:能够完全重合的两个图形是全等图形,据此可得正确答案【详解】解:A、大小不同,不能重合,不是全等图形,符合题意;B、大小不同,不能重合,不是全等图形,符合题意;C、大小相同,形状相同,是全等图形,不符合题意;D、正五边形和正六边形不是全等图形,符合题意;故选:ABD【考点】本题考查了全等图形的识别,熟知全等图形的定义是解本题的关键 线 封 密 内 号学级年名姓 线 封 密 外 三、填空题1、灵活性【解析
11、】【分析】根据四边形的灵活性,可得答案【详解】我们常见的晾衣服的伸缩晾衣架,是利用了四边形的灵活性,故答案为灵活性【考点】此题考查多边形,解题关键在于掌握四边形的灵活性.2、【解析】【分析】根据分式的运算法则计算即可【详解】解:,故答案为:【考点】此题主要考查分式的运算,解题的关键是熟知其运算法则3、【解析】【分析】提取公因式a2即可【详解】解:,=,故答案为:【考点】本题考查了分解因式方法之一提取公因式,正确提取公因式是解决本题的关键4、 【解析】【分析】根据分式乘方的运算法则计算即可;【详解】解:(1), 线 封 密 内 号学级年名姓 线 封 密 外 (2)(3),(4),故答案为:,【考
12、点】本题考查了分式的乘方,熟练掌握运算法则是解题的关键5、(m+3)(m-3)【解析】【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可【详解】故答案为【考点】本题考查了利用公式法分解因式,先利用多项式的乘法运算法则展开整理成一般形式是解题的关键.四、解答题1、(1);(2)【解析】【分析】(1)先计算乘方、将除法转化为乘法,再约分即可得;(2)先计算括号内异分母分式的减法、除法转化为乘法,再约分即可得【详解】解:(1)原式();(2)原式【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则2、9【解析】【分析】过点A作AFBC交BC于
13、F,则由已知得:BC2BF,首先由ABAC,BAC120得BC30,则在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,从而求出BC【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:过点A作AFBC交BC于F,ABAC,BAC120,BC30,BC2BF,在RtBAE中,AE=3cm,ABcm,在RtAFB中,BFABcos30,BC2BF29【考点】本题考查了等腰三角形的性质和解直角三角形,通过作辅助线构造直角三角形是解题关键3、(1)见解析;(2)122C;(3)122C.【解析】【分析】(1)根据折叠的性质得DFE=A,由已知得A=C,于是得到DFE=C,即可得到结
14、论;(2)先根据四边形的内角和等于360得出A+A=1+2,再由图形翻折变换的性质即可得出结论;(3)AED=AED(设为),ADE=ADE(设为),于是得到2+2=180,1=-BDE=-(A+),推出2-1=180-(+)+A,根据三角形的内角和得到A=180-(+),证得2-1=2A,于是得到结论【详解】解:(1) 由折叠知A=DFE,A=C,DFE=C,BCDF;(2)122A.理由如下:12AED180,22ADE180,122(ADEAED)360.AADEAED180,ADEAED180A,122(180A)360,即122C.(3)122A.2AED1180,2ADE2180,
15、2(ADEAED)12360.AADEAED180,ADEAED180A,122(180A)360,即122C.【考点】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180,综合题,但难度不大,熟记性质准确识图是解题的关键4、证明见解析【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】延长AD到点G,使得,连接,结合D是BC的中点,易证ADC和GDB全等,利用全等三角形性质以及等量代换,得到AEF中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长到点,延长AD到点G,使得,连接是边上的中线,在和中,(对顶角相等),(SAS),又,即【考点】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.5、(1)见解析;(2)见解析【解析】【分析】(1)根据等边对等角,在AB上取一点D使BD=BC=3,连接CD即可;(2)线段AB的垂直平分线与AC的交点E即为所求【详解】(1)如图所示,即为所求,(2)如图所示,即为所求, 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了作图-应用与设计作图,等腰三角形的性质,线段的垂直平分线的性质等知识,熟练运用等腰三角形的性质,线段垂直平分线的性质是解题的关键