1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中模拟考试试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列命题的逆命题一定成立的是()对顶角相等;同位角相等,两直线平行;
2、全等三角形的周长相等;能够完全重合的两个三角形全等ABCD2、利用边长相等的正三角形和正六边形地板砖镶嵌地面,在每个顶点周围有块正三角形和块正六边形地板砖,则的值为()A3或4B4或5C5或6D43、如图,AB=AD,BAO=DAO,由此可以得出的全等三角形是()ABCD4、如图,AB和CD相交于点O,则下列结论正确的是()A12B23C34D155、如果三角形的两边长分别为7和2,且它的周长为偶数,那么第三边的长为()A6B7C5D8二、多选题(5小题,每小题4分,共计20分)1、下列长度的各种线段,可以组成三角形的是()A2,3,4B1,1,2C5,5,9D7,5,12、下列命题中正确的是
3、()A有两个角和第三个角的平分线对应相等的两个三角形全等;B有两条边和第三条边上的中线对应相等的两个三角形全等;C有两条边和第三条边上的高对应相等的两个三角形全等D有两条边和一个角对应相等的两个三角形全等3、已知等腰三角形的周长是12,且各边长都为整数,则各边的长可能是() 线 封 密 内 号学级年名姓 线 封 密 外 A2,2,8B5,5,2C4,4,4D3,3,54、如图,O是正六边形ABCDE的中心,下列图形不可能由OBC平移得到的是()AOCDBOABCOAFDOEF5、如图,下列结论正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,已知
4、在ABD和ABC中,DABCAB,点A、B、E在同一条直线上,若使ABDABC,则还需添加的一个条件是_(只填一个即可)2、如果一个正多边形的一个内角是135,则这个正多边形是_3、如图,在和中,则_4、如图,将分别含有、角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为,则图中角的度数为_5、如图,在ABC中,D,E分别是边AB,AC上一点,将ABC沿DE折叠,使点A的对称点A落在边BC上,若A50,则1+2+3+4_四、解答题(5小题,每小题8分,共计40分) 线 封 密 内 号学级年名姓 线 封 密 外 1、已知ABC与ADE均为等腰直角三角形,且BACDAE90,点D在直线BC
5、上(1)如图1,当点D在CB延长线上时,求证:BECD;(2)如图2,当D点不在直线BC上时, BE、CD相交于M,直接写出CME的度数;求证:MA平分CME2、如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B作BFAE交ED于F,且EM=FM(1)若AE=5,求BF的长;(2)若AEC=90,DBF=CAE,求证:CD=FE3、如图,已知线段a、b和,用尺规作一个三角形,使(要求:不写已知、求作、作法、只画图,保留作图痕迹)4、阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题请看这个例题:如图1,在四边形ABCD中,BAD=BCD
6、=90,AB=AD,若AC=2cm,求四边形ABCD的面积解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明BAEDAC,根据全等三角形的性质得AE=AC=2, EAB=CAD,则EAC=EAB+BAC=DAC+BAC=BAD=90,得S四边形ABCD=SABC+SADC=SABC+SABE=SAEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2(2)请你用上面学到的方法完成下面的习题如图2,已知FG=FN=HM=GH+MN=2cm,G=N=90,求五边形FGHMN的面积5、如图,在五边形ABCDE中,AB
7、=CD,ABC=BCD,BE,CE分别是ABC,BCD的角平分线(1)求证:ABEDCE;(2)当A=80,ABC=140,时,AED=_度(直接填空) 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、C【解析】【分析】求出各命题的逆命题,然后判断真假即可【详解】解:对顶角相等,逆命题为:相等的角为对顶角,是假命题不符合题意;同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,是真命题,符合题意;全等三角形的周长相等. 逆命题为:周长相等的两个三角形全等,是假命题,不符合题意;能够完全重合的两个三角形全等. 逆命题为:两个全等三角形能够完全重合,是真命题,符合题意
8、;故逆命题成立的是,故选C【考点】本题主要考查命题与定理,熟悉掌握逆命题的求法是解本题的关键2、B【解析】【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌【详解】正三边形和正六边形内角分别为60、120,604+120=360,或602+1202=360,a=4,b=1或a=2,b=2,当a=4,b=1时,a+b=5;当a=2,b=2时,a+b=4故选B【考点】解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合3、B【解析】【分析】观察图形,运用SAS可判定ABO与ADO
9、全等【详解】解:AB=AD,BAO=DAO,AO是公共边,ABOADO (SAS)故选B【考点】本题考查全等三角形的判定,属基础题,比较简单4、A【解析】【分析】根据平行线的性质和对顶角的性质进行判断 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:A、1与2是对顶角,12,本选项说法正确;B、AD与AB不平行,23,本选项说法错误;C、AD与CB不一定平行,34,本选项说法错误;D、CD与CB不平行,15,本选项说法错误;故选:A【考点】本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键5、B【解析】【分析】设第三边的长为 ,根据三角形的三边关系,可得,再由它
10、的周长为偶数,即可求解【详解】解:设第三边的长为 ,根据题意得: ,即 ,它的周长为偶数,当 时,周长为 ,是偶数故选:B【考点】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键二、多选题1、AC【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:A、 ,能构成三角形,符合题意;B、1+1=2,不能构成三角形,不符合题意;C、,能构成三角形,符合题意;D、5+17,不能构成三角形,不符合题意故选AC【考点】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和
11、是解决问题的关键2、AB【解析】【分析】结合已知条件和全等三角形的判定方法,对所给的四个命题依次判定,即可解答【详解】A、正确可以用AAS判定两个三角形全等;如图:BB,CC,AD平分BAC, 线 封 密 内 号学级年名姓 线 封 密 外 AD平分BAC,且ADAD, BB,CC,BACBAC,AD,AD分别平分BAC,BAC,BADBAD ,ABDABD(AAS),ABAB,在ABC和ABC中, ,ABCABC(AAS)B、正确可以用“倍长中线法”,用SAS定理,判断两个三角形全等,如图, , , ,AD,AD分别为、 的中线,分别延长AD,AD到E,E,使得AD=DE,AD=DE, ,AD
12、CEDB,BE=AC,同理:BE=AC,BE=BE,AE=AE,ABEABE,BAE=BAE,E=E,CAD=CAD,BAC=BAC, , ,BACBACC、不正确因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等D、不正确,必须是两边及其夹角分别对应相等的两个三角形全等故选:AB 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了全等三角形的判定方法,要根据选项提供的已知条件逐个分析,看是否符合全等三角形的判定方法,注意SSA是不能判定两三角形全等的3、BC【解析】【分析】根据三角形三边之间的关系:两
13、边之和大于第三边,两边之差小于第三边结合题目条件“周长为12”,可得出正确答案【详解】A.2+22,5-54,4-45,3-35;但3+3+512;排除故选:BC【考点】本题主要考查了能够组成三角形三边之间的关系:两边之和大于大三边,两边之差小于第三边;注意结合题目条件“周长为12”4、ABD【解析】【分析】利用平移的定义和性质求解,平移不改变图形的形状和大小。图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。.【详解】解: O是正六边形ABCDE的中心,都是等边三角形,都不能由平移得到,可以由平移得到,故符合题意,不符合题意;故选:【考点】本题考查的是正多边形的性质,平移的定义,
14、平移的性质,熟悉平移的含义与性质是解题的关键.5、AD【解析】【分析】根据三角形的一个外角等于和它不相邻的两个内角的和作答【详解】A、1是ABC的一个外角,123,正确,符合题意;B、1是ABC的一个外角,123,选项错误,不符合题意;C、1是ABC的一个外角,123,又2是CDE的一个外角,245,选项错误,不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 D、2是CDE的一个外角,245,正确,符合题意故选:AD【考点】本题主要考查了三角形的外角性质,解题关键是掌握一个外角等于和它不相邻的两个内角的和三、填空题1、ADAC(DC或ABDABC等)【解析】【分析】利用全等三角形的判
15、定方法添加条件即可求解【详解】解:DABCAB,ABAB,当添加ADAC时,可根据“SAS”判断ABDABC;当添加DC时,可根据“AAS”判断ABDABC;当添加ABDABC时,可根据“ASA”判断ABDABC故答案为ADAC(DC或ABDABC等)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件2、正八边形【解析】【分析】根据正多边形的外角和为即可求出正多边形的边数【详解】解:正多边形的一个内角是135,它的每一个外角为45又因为多边形的外角和恒为360,360458,即该正多边形为正八边形故答案为:正八边形【考点】本题主要考查正
16、多边形的外角和,掌握正多边形的外角和是解决问题的关键3、130【解析】【分析】证明ABCADC即可【详解】,AC=AC,ABCADC,D=B=130,故答案为:130【考点】本题考查了全等三角形的判定和性质,掌握判定定理是解题关键4、#140度 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】如图,首先标注字母,利用三角形的内角和求解,再利用对顶角的相等,三角形的外角的性质可得答案【详解】解:如图,标注字母,由题意得: 故答案为:【考点】本题考查的是三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键5、230【解析】【分析】依据三角形内角和定理,可得ABC中,B+C
17、130,再根据1+2+B180,3+4+C180,即可得出1+2+3+4360(B+C)230【详解】解:A50,ABC中,B+C130,又1+2+B180,3+4+C180,1+2+3+4360(B+C)360130230,故答案为:230【考点】本题主要考查三角形内角和,熟练掌握三角形内角和及角之间的等量关系是解题的关键四、解答题1、 (1)见解析(2)90;见解析【解析】【分析】(1)先推出CAD=BAE,C=ABC=45,然后证明CADBAE得到ABE=C=45,则EBC=ABE+ABC=90,即EBCD;(2)同理可证BAECAD,得到ABE=ACD,再由EMC=EBC+BCD,得到
18、EMC=ABE+ABC+ACD+BCD=90;如图,过点A作AGBE于G,AFCD于F,由BAECAD,得到AG=AF,证明RtAGMRtAFM得到AMG=AMF,即AM平分EMC(1)解:ABC与ADE均为等腰直角三角形,且BACDAE90,AB=AC,AE=AD,DAE+DAB=CAB+DAB, 线 封 密 内 号学级年名姓 线 封 密 外 CAD=BAE,C=ABC=45,CADBAE(SAS),ABE=C=45,EBC=ABE+ABC=90,即EBCD;(2)解:同理可证BAECAD,ABC=ACB=90,ABE=ACD,EMC=EBC+BCD,EMC=ABE+ABC+ACD+BCD=
19、90;如图,过点A作AGBE于G,AFCD于F,BAECAD,AG=AF,在RtAGM和RtAFM中,RtAGMRtAFM(HL),AMG=AMF,即AM平分EMC【考点】本题主要考查了全等三角形的性质与判定,三角形外角的性质,熟知全等三角形的性质与判定条件是解题的关键2、(1)BF=5;(2)见解析【解析】【分析】(1)证明AEMBFM即可;(2)证明AECBFD,得到EC=FD,利用等式性质,得到CD=FE【详解】(1)BFAE,MFB=MEA,MBF=MAE,EM=FM,AEMBFM,AE=BF,AE=5,BF=5;(2)BFAE,MFB=MEA,AEC=90, 线 封 密 内 号学级年
20、名姓 线 封 密 外 MFB=90,BFD=90,BFD=AEC,DBF=CAE,AE=BF,AECBFD,EC=FD,EF+FC=FC+CD,CD=FE【考点】本题考查了平行线的性质,三角形全等的判定和性质,等式的性质,熟练掌握平行线性质,灵活进行三角形全等的判定是解题的关键3、见解析【解析】【分析】先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,即可【详解】解:先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,连接,即为所求,如图所示:【考点】本题考查了复杂作图,利用了作一个角等于已知角,作线段等于已知线段,是基本作图,需熟练掌握解决此类题目的关键是熟悉基本几
21、何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作4、(1)2;(2)4【解析】【分析】(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解【详解】(1)由题意知,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示: 线 封 密 内 号学级年名姓 线 封 密 外 FG=FN=HM=GH+MN=2cm,G=N=90,FNK=FGH=90,FH=FK,又FM=FM,HM=KM=MN+GH=MN+NK,MK=FN=2cm,【考点】本题
22、主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用5、 (1)见解析;(2)100【解析】【分析】(1)根据ABC=BCD,BE,CE分别是ABC,BCD的角平分线,可得ABE=DCE,CBE=BCE,推出BE=CE,由此利用SAS证明ABEDCE;(2)根据三角形全等的性质求出D的度数,利用公式求出五边形的内角和,即可得到答案(1)证明:ABC=BCD,BE,CE分别是ABC,BCD的角平分线,ABE=CBE=ABC,BCE=DCE=BCD,ABE=DCE,CBE=BCE,BE=CE,又AB=CD,ABEDCE(SAS);(2)ABEDCE,D=A=80,五边形ABCDE的内角和为,AED=,故答案为:100【考点】此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键