1、八年级数学上册第十二章全等三角形同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知是的角平分线,是的垂直平分线,则的长为()A6B5C4D2、如图,已知ABCDCB添加一个条件后,可得AB
2、CDCB,则在下列条件中,不能添加的是()AACDBBABDCCADDABDDCA3、如图,在ABC和ABC中,ABCABC,AABC,则,满足关系()ABCD4、下列语句中正确的是()A斜边和一锐角对应相等的两个直角三角形全等B有两边对应相等的两个直角三角形全等C有两个角对应相等的两个直角三角形全等D有一直角边和一锐角对应相等的两个直角三角形全等5、在正方形网格中,AOB的位置如图所示,到AOB两边距离相等的点应是()A点MB点NC点PD点Q6、已知:如图,12,则不一定能使ABDACD的条件是 ( )AABACBBDCDCBCDBDACDA7、如图:B=C=90,E是BC的中点,DE平分A
3、DC,则下列说法正确的有几个()(1)AE平分DAB;(2)EBADCE; (3)AB+CD=AD;(4)AEDE(5)DE=AEA2个B3个C4个D58、下列关于全等三角形的说法不正确的是A全等三角形的大小相等B两个等边三角形一定是全等三角形C全等三角形的形状相同D全等三角形的对应边相等9、如图,把沿线段折叠,使点落在点处;若,则的度数为()ABCD10、如图,在ABC中,C=90,点D在AC上,DEAB,若CDE=165,则B的度数为()A15B55C65D75第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段
4、时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90,且CMDM已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是_秒2、如图,ABC中,BD平分ABC,ADBD,BCD的面积为10,ACD的面积为6,则ABD的面积是_3、如图,PMOA,PNOB,BOC30,PMPN,则AOB_4、如图,在ABC中,ADBC于点D,过A作AEBC,且AEAB,AB上有一点F,连接EF若EFAC,CD4BD,则_5、如图,若ABCA1B1C1,且A110,B40,则C1_三、解答题(5小题,每小题10分,共计50分)1、如图,和都是等边三角形,连接与,延长交于点
5、H(1)证明:;(2)求的度数;(3)连接,求证:平分2、已知如图,ABC中,AB=AC,D、E分别是AC、AB上的点, M、N分别是CE、BD上的点,若MACE,ANBD,AM=AN求证:EM=DN3、如图,若OADOBC,且O=65,BEA=135,求C的度数4、如图,在五边形ABCDE中,AB=CD,ABC=BCD,BE,CE分别是ABC,BCD的角平分线(1)求证:ABEDCE;(2)当A=80,ABC=140,时,AED=_度(直接填空)5、如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,1=2(1)求证:;(2)证明:1=3-参考答案-一、单选题1、D【解析】【分析
6、】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=ABD=30,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,BD=2AD=6,CD=6,CE =3,故选D【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.2、A【解析】【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排
7、除错误的选项【详解】解:ABCDCB,BCBC,A、添加ACDB,不能得ABCDCB,符合题意;B、添加ABDC,利用SAS可得ABCDCB,不符合题意;C、添加AD,利用AAS可得ABCDCB,不符合题意;D、添加ABDDCA,ACBDBC,利用ASA可得ABCDCB,不符合题意;故选:A【考点】本题主要考查三角形全等的判定,熟练掌握判定方法是解题的关键3、C【解析】【分析】根据,证得,=,再利用BC得到=,再根据三角形内角和定理即可得到结论.【详解】,,ACB=,=,BC,=,故选:C.【考点】此题考查旋转图形的性质,等腰三角形的性质,两直线平行内错角相等,三角形的内角和定理.4、A【解析
8、】【分析】根据全等三角形的判定定理,用排除法以每一个选项进行分析从而确定最终答案【详解】A、正确,利用AAS来判定全等;B、不正确,两边的位置不确定,不一定全等;C、不正确,两个三角形不一定全等;D、不正确,有一直角边和一锐角对应相等不一定能推出两直角三角形全等,没有相关判定方法对应故选A【考点】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形的相关判定.5、A【解析】【分析】利用到角的两边的距离相等的点在角的平分线上进行判断【详解】点P、Q、M、N中在AOB的平分线上的是M点故选:A【考点】本题主要考查了角平分线的性质,根据正方形网格看出AOB平分线上的点是解答问题的关键6、B
9、【解析】【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案【详解】解:A、1=2,AD为公共边,若AB=AC,则ABDACD(SAS);故A不符合题意;B、1=2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定ABDACD;故B符合题意;C、1=2,AD为公共边,若B=C,则ABDACD(AAS);故C不符合题意;D、1=2,AD为公共边,若BDA=CDA,则ABDACD(ASA);故D不符合题意故选B7、B【解析】【分析】过点E作EFAD垂足为点F,证明DEFDEC(AAS);得出CEEF,DCDF,CEDFED,证明RtAFERtABE(HL
10、);得出AFAB,FAEBAE,AEFAEB,即可得出答案【详解】解:如图,过点E作EFAD,垂足为点F,可得DFE90,则DFEC,DE平分ADC,FDECDE,在DCE和DFE中,DEFDEC(AAS);CEEF,DCDF,CEDFED,E是BC的中点,CEEB,EFEB,在RtABE和RtAFE中,RtAFERtABE(HL);AFAB,FAEBAE,AEFAEB,AE平分DAB,故结论(1)正确,则ADAF+DFAB+CD,故结论(3)正确;可得AEDFED+AEFFEC+BEF90,即AEDE故结论(4)正确ABCD,AEDE,(5)错误,EBADCE不可能成立,故结论(2)错误综上
11、所知正确的结论有3个故答案为:B【考点】本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键8、B【解析】【分析】根据全等三角形的定义与性质即可求解【详解】A、全等三角形的大小相等,说法正确,故A选项错误;B、两个等边三角形,三个角对应相等,但边长不一定相等,所以不一定是全等三角形,故B选项正确;C、全等三角形的形状相同,说法正确,故C选项错误;D、全等三角形的对应边相等,说法正确,故D选项错误故选B【考点】本题考查了全等三角形的定义与性质,能够完全重合的两个三角形叫做全等三角形,即形状相同、大小相等两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等9、C【解析
12、】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求【详解】解:沿线段折叠,使点落在点处, , , , , ,故选:C【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决10、D【解析】【分析】根据邻补角定义可得ADE=15,由平行线的性质可得A=ADE=15,再根据三角形内角和定理即可求得B=75【详解】解:CDE=165,ADE=15,DEAB,A=ADE=15,B=180CA=1809015=75,故选D【考点】本题考查了平行线的性质、三角形内角和定理等,熟练
13、掌握平行线的性质以及三角形内角和定理是解题的关键二、填空题1、4【解析】【分析】根据角的等量代换求出,便可证出,利用全等的性质得到,从而求出的长,再通过时间=路程速度列式计算即可【详解】解:根据题意可得:,又在和中时间=故答案为4【考点】本题主要考查了全等三角形的判定与性质,利用角的等量代换找出三角形全等的条件是解题的关键2、16【解析】【分析】延长交于,由证明,得出,得出,进而得出,即可得出结果【详解】如图所示,延长、交于, 平分,在和中,故答案为:16【考点】此题考查全等三角形的判定与性质,三角形面积的计算,证明三角形全等得出是解题关键3、60或60度【解析】【分析】根据到角的两边距离相等
14、的点在角的平分线上判断出OC平分AOB,再根据角平分线的定义可得AOB=2BOC【详解】解:PMOA,PNOB,PM=PN,OC平分AOB,AOB=2BOC,又BOC30,AOB =60故答案为:60【考点】本题考查了角平分线的判定,掌握角平分线的判定是解题的关键4、【解析】【分析】在CD上取一点G,使GD=BD,连接AG,作EHAB交BA的延长线于点H,先证明AEHGAD,得EH=AD,AH=GD,再证明RtEHFRtADC,得FH=CD,于是得AF=GC,则,得SAEF=SGAC,设GD=BD=m,则CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,则,得,于是得到问题的
15、答案【详解】解:如图,在CD上取一点G,使GD=BD,连接AG,作EHAB交BA的延长线于点H,ADBC于点D,AG=AB,H=ADG=90AGD=B,AE/BC,EAH=B,EAH=AGD,AE=AB,AE=AG, 在AEH和GAD中,AEHGAD(AAS),EH=AD,AH=GD,在RtEHF和RtADC中,RtEHFRtADC(HL),FH=CD,FH-AH=CD-GD,AF=GC,SAEF=SGAC,设GD=BD=m,则CD=4BD=4m,CG=4m-m=3m,BC=4m+m=5m,故答案为:【考点】此题考查平行线的性质、全等三角形的判定与性质、有关面积比问题的求解等知识与方法,正确地
16、作出所需要的辅助线是解题的关键5、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180来求角的度数【详解】ABCA1B1C1,C1=C,又C=180-A-B=180-110-40=30,C1=C=30故答案为30【考点】本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来三、解答题1、 (1)见解析(2)60(3)见解析【解析】【分析】(1)由ABD和BCE都是等边三角形得BABD,BEBC,ABDEBC60,所以ABEDBC60DBE,即可根据全等三角形的判定定理“SAS”证明ABE
17、DBC,得AEDC;(2)由ABEDBC得BAEBDC,因为BADBDA60,所以HADHDA120,所以AHD60;(3)作BFHA于点F,BGHC交HC的延长线于点G,则AFBBFHG90,即可证明BAFBDG,则BFBG,根据“到角的两边距离相等的点在角的平分线上”即可证明HB平分AHC(1)证明:如图1,ABD和BCE都是等边三角形,BABD,BEBC,ABDEBC60,ABEDBC60DBE,在ABE和DBC中,ABEDBC(SAS),AEDC(2)解:如图1,由(1)得ABEDBC,BAEBDC,BADBDA60,HADHADHADBDCBDAHADBAEBDABADBDA120,
18、AHD180(HADHDA)60(3)证明:如图2,作BFHA于点F,BGHC交HC的延长线于点G,则AFBBFHG90,由ABEDBC得BAFBDG,在BAF和BDG中,BAFBDG(AAS),BFBG,点B在AHC的平分线上,HB平分AHC【考点】此题考查等边三角形的性质、全等三角形的判定与性质、到角的两边距离相等的点在角的平分线上等知识,证明三角形全等是解题的关键2、见解析.【解析】【分析】首先由已知证明RtBANRtCAM,得到ABN=ACM,BN=CM,再根据ASA证明ABDACE,得到BD=CE,由此可得CE-CM= BD-BN,即EM=DN.【详解】证明:在RtBAN和RtCAM
19、中,所以RtBANRtCAM(HL),ABN=ACM,BN=CM,在ABD和ACE中,ABDACE(ASA),BD=CE,CE-CM= BD-BN,即EM=DN.【考点】本题主要考查了三角形全等的判定和性质,熟练掌握判定定理和性质定理并能灵活运用是解题关键.3、35【解析】【分析】根据全等三角形对应角相等可得C=D,OBC=OAD,再根据三角形的内角和等于180表示出OBC,然后利用四边形的内角和等于360列方程求解即可【详解】C=D,OBC=OAD,O=65,OBC=18065C=115C,在四边形AOBE中,O+OBC+BEA+OAD=360,65+115C+135+115C=360,解得
20、C=35.【考点】此题考查了全等三角形的性质和四边形的内角和等于360,熟练掌握这两个性质是解题的关键.4、 (1)见解析;(2)100【解析】【分析】(1)根据ABC=BCD,BE,CE分别是ABC,BCD的角平分线,可得ABE=DCE,CBE=BCE,推出BE=CE,由此利用SAS证明ABEDCE;(2)根据三角形全等的性质求出D的度数,利用公式求出五边形的内角和,即可得到答案(1)证明:ABC=BCD,BE,CE分别是ABC,BCD的角平分线,ABE=CBE=ABC,BCE=DCE=BCD,ABE=DCE,CBE=BCE,BE=CE,又AB=CD,ABEDCE(SAS);(2)ABEDCE,D=A=80,五边形ABCDE的内角和为,AED=,故答案为:100【考点】此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键5、(1)证明见解析;(2)证明见解析【解析】【分析】(1)先根据角的和差可得,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得,再根据对顶角相等可得,然后根据三角形的内角和定理、等量代换即可得证【详解】(1),即,在和中,;(2)由(1)已证:,由对顶角相等得:,又,【考点】本题考查了三角形全等的判定定理与性质、对顶角相等、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键