1、人教版八年级数学上册第十三章轴对称章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中点P(1,2)关于x轴的对称点的坐标是()A(1,2)B(1,2)C(1,2)D(2,1)2、以
2、下四大通讯运营商的企业图标中,是轴对称图形的是()ABCD3、如图,在中,则()ABCD4、如图,若,则下列结论中不一定成立的是()ABCD5、一个三角形具备下列条件仍不是等边三角形的是()A一个角的平分线是对边的中线或高线B两边相等,有一个内角是60C两角相等,且两角的和是第三个角的2倍D三个内角都相等6、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD7、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数
3、为()A4B3C2D18、已知在ABC中,点P在三角形内部,点P到三个顶点的距离相等,则点P是()A三条角平分线的交点B三条高线的交点C三条中线的交点D三条边垂直平分线的交点9、如图,将ABCD沿对角线AC折叠,使点B落在B处,若1=2=44,则B为()A66B104C114D12410、北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,A+BC,且AB=2BC,B=_2、如图,在四边形中,点为边上一点,连接.,与交于点,且,若,则的长为_.3、正五边形ABCDE中,对角线AC、
4、BD相较于点P,则APB的度数为_4、如图,在ABC中,AB=AC,外角ACD=110,则A=_5、等腰三角形的一个外角为100,则它的底角是_.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,点D,E分别在边AB,AC上,连结CD,BE(1)若,求,的度数(2)写出与之间的关系,并说明理由2、如图,在四边形ABCD中,BAD90,点E在AC上,ECEDDA求CAB的度数3、如图,在中,过的中点作,垂足分别为点、(1)求证:;(2)若,求的度数4、在,这两个条件中选择其中一个,补充在下面的问题中,请完成问题的解答问题:如图,中,点D,E在边BC上(不与点B,C重合)连结AD,AE
5、若_,求证:5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,点C的坐标为(4,1)(1)画出ABC的各点纵坐标不变,横坐标乘1后得到的;(2)画出的各点横坐标不变,纵坐标乘1后得到的;(3)点的坐标是;点的坐标是-参考答案-一、单选题1、A【解析】【详解】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A2、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D【考点】题目主要考查轴对称图形的判断,理解
6、轴对称图形的定义是解题关键3、D【解析】【分析】先根据等腰三角形的性质得到B的度数,再根据平行线的性质得到BCD.【详解】解:AB=AC,A=40,B=ACB=70,CDAB,BCD=B=70,故选D.【考点】本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.4、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD=CAE,AD=AB,ABD=ADB,BAD=180-ABD-ADB,CDE=180-ADB-ADE,ABD=ADE,BAD=CDE故B、C、D选项不符合题意,故选:A【考点】
7、本题考了三角形全等的性质,解题的关键是三角形全等的性质5、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60,根据有一个角为60的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形;选项D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形.故选A.【考点】
8、本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.6、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及三角形内角和与对顶角,可判断正确;证明AFMBAD(AAS),得出FM=AD,FAM=ABD,则正确,同理ANGCDA,得出NG=AD,则FM=NG,证明FMEGNE(AAS)可得出结论正确【详解】解:BAF=CAG=90,BAF+BAC=CAG+BAC,即CAF=GAB,又AB=AF=AC=AG,CAFGAB(SAS),BG=CF,故正确;FACBAG,FCA=BGA,又BC与AG所交的对顶角相等,BG与FC所交角等于GAC,即等于90,
9、BGCF,故正确;过点F作FMAE于点M,过点G作GNAE交AE的延长线于点N,FMA=FAB=ADB=90,FAM+BAD=90,FAM+AFM=90,BAD=AFM,又AF=AB,AFMBAD(AAS),FM=AD,FAM=ABD,故正确,同理ANGCDA,NG=AD,FM=NG,FMAE,NGAE,FME=ENG=90,AEF=NEG,FMEGNE(AAS)EF=EG故正确故选:D【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识熟练掌握全等三角形的判定与性质是解题的关键7、B【解析】【分析】根据题意逐个证明即可,只要证明,即
10、可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.8、D【解析】【分析】根据线段垂直平分线的性质解答即可【详解】解:在ABC中,三角形内部的点P到三个顶点的距离相等,点P是三条边垂直平分线的交点,故选:D【考点】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线上的点到线段的两个端点的距离相等是解答的关键9、C【解析】【分析】根据平行四边形
11、性质和折叠性质得BAC=ACD=BAC=1,再根据三角形内角和定理可得.【详解】四边形ABCD是平行四边形,ABCD,ACD=BAC,由折叠的性质得:BAC=BAC,BAC=ACD=BAC=1=22,B=180-2-BAC=180-44-22=114,故选C【考点】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出BAC的度数是解决问题的关键10、D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,故不符合题意;D是轴对称图形,故选D.【考点】本题考查了轴对称图形的定义,准确理解定义是解题的关键二、填空题1
12、、60【解析】【分析】利用三角形内角和定理求得C=90,在RtACB中,AB=2BC推出A=30,从而得出B的度数【详解】根据三角形的内角和定理得,A+B+C=180,A+B=C,C+C=180,解得C=90,在RtACB中,AB=2BC,A=30,B=90-30=60故答案为:60【考点】本题考查了三角形内角和定理的应用,含30度角的直角三角形的性质,灵活运用含30度角的直角三角形的性质是解题的关键2、【解析】【分析】由,知点A,C都在BD的垂直平分线上,因此,可连接交于点,易证是等边三角形,是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC的长度,应用勾股定理
13、可求解.【详解】解:如图,连接交于点,垂直平分,是等边三角形,是等边三角形,【考点】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.3、72#72度【解析】【分析】根据正五边形的性质,可得,AB=BC=CD,从而得到ACB=CBD=36,再由三角形外角的性质,即可求解【详解】解:多边形ABCDE是正五边形,AB=BC=CD,ACB=CBD=36,APB=ACB+CBD=72故答案为:72【考点】本题主要考查了正多边形的性质,等腰三角形的性质,三角形外角的性质,熟练掌握正多边形的性质,等腰三角形的性质,三角形外角的性质是解题的关
14、键4、40【解析】【分析】由ACD=110,可知ACB=70;由AB=AC,可知B=ACB=70;利用三角形外角的性质可求出A.【详解】解:ACD=110,ACB=180-110=70;AB=AC,B=ACB=70;A=ACD-B=110-70=40.故答案为40.【考点】本题考查了等边对等角和三角形外角的性质.5、80或50【解析】【分析】等腰三角形的一个外角等于100,则等腰三角形的一个内角为80,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论【详解】等腰三角形的一个外角等于100,等腰三角形的一个内角为80,当80为顶角时,其他两角都为50、50,当80为底角时,其他两角
15、为80、20,所以等腰三角形的底角可以是50,也可以是80.答案为:80或50.【考点】本题考查等腰三角形的性质,当已知角没有明确是顶角还是底角的时候,分类讨论是关键.三、解答题1、(1);(2),见解析【解析】【分析】(1)利用三角形的内角和定理求出的大小,再利用等腰三角形的性质分别求出,(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含分别表示,即可得到两角的关系【详解】(1),在中,(2),的关系:理由如下:设,在中,在中,【考点】本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形的性质三角形的内角和等于 三角形的外角等于与其
16、不相邻的两个内角之和等腰三角形等边对等角2、【解析】【分析】根据等腰三角形的性质,等边对等角,又利用平行线的性质可得角度之间的关系,从而可以求解【详解】DECE,ECDCDEDEA是CDE的外角,DEAECDCDE2ECDDEAD,DEADAE,DAE2ECD,CABDCA,DAE2CABBAD90,故答案为:【考点】本题主要考查等腰三角形和平行线的性质,利用等腰三角形和平行线的性质得到角之间的关系是解题的关键3、(1)证明见解析;(2)=80【解析】【分析】(1)利用已知条件和等腰三角形的性质证明,根据全等三角形的性质即可证明;(2)根据三角形内角和定理得B=50,所以C=50,在ABC中利
17、用三角形内角和定理即可求解【详解】解:(1)证明:点D为BC的中点,BD=CD,DEB=DFC=90在BDE和CDF中,(2)B=180-(BDE+BED)=50,C=50,在ABC中,=180-(B+C)=80,故=80【考点】本题考查等腰三角形的性质、全等三角形的判定与性质和三角形内角和定理,熟练掌握等腰三角形的性质并灵活应用是解题的关键4、或【解析】【分析】选择条件,可得到,根据等角的补角相等可推出,再利用得到,则可根据“AAS”可判断,从而得到;选择条件,可得到,利用得到,则可根据“ASA”可判断,从而得到【详解】证明:选择条件的证明为:,又,在和中,(),;选择条件的证明为:,又,在
18、和中,()故答案为:或【考点】本题考查了全等三角形的判定与性质全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具在判定三角形全等时,关键是选择恰当的判定条件本题也考查了等腰三角形的性质、等角的补角相等的知识5、(1)见解析(2)见解析(3)(4,1);(4,1)【解析】【分析】(1)ABC的各点纵坐标不变,横坐标乘-1后的坐标首先写出,然后在数轴上表示出来,顺次连接;(2)A1B1C1的各点横坐标不变,纵坐标乘-1后的坐标首先写出,然后在数轴上表示出来,顺次连接;(3)根据(1)(2)即可直接写出【详解】(1)A1的坐标是(-1,-4),B1的坐标是(-5,-4),C1的坐标是(-4,-1),如图,A1B1C1为所作;(2)A2的坐标是(-1,4),B2的坐标是(-5,4),C2的坐标是(-4,1),如图,A2B2C2为所作;(3)C1的坐标是(4,1),C2的坐标是(4,1)故答案是:(4,1),(4,1)【考点】本题考查了坐标与图形的变化轴对称变换,根据题目的叙述求得A1B1C1和A2B2C2的坐标是解题的关键