1、人教版九年级数学上册第二十四章圆专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多边形中,内角和最大的是()ABCD2、如图,O中,弦ABCD,垂足为E,F为的中点,连接AF、BF、AC,AF
2、交CD于M,过F作FHAC,垂足为G,以下结论:;HCBF:MFFC:,其中成立的个数是()A1个B2个C3个D4个3、如图,AB是O的直径,点E是AB上一点,过点E作CDAB,交O于点C,D,以下结论正确的是()A若O的半径是2,点E是OB的中点,则CDB若CD,则O的半径是1C若CAB30,则四边形OCBD是菱形D若四边形OCBD是平行四边形,则CAB604、一个点到圆的最大距离为11 cm,最小距离为5 cm,则圆的半径为()A16cm或6 cmB3cm或8 cmC3 cmD8 cm5、如图,是的内接三角形,是直径,则的长为( )A4BCD6、如图,O的半径为5cm,直线l到点O的距离O
3、M=3cm,点A在l上,AM=3.8cm,则点A与O的位置关系是()A在O内B在O上C在O外D以上都有可能7、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD8、已知O中最长的弦为8cm,则O的半径为()cmA2B4C8D169、如图所示,一个半径为r(r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分面积是()ABCD10、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距
4、离相等,则点是三个角平分线的交点A1B2C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,圆锥的母线长OA=6,底面圆的半径为,一只小虫在圆线底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短路程为_(结果保留根号)2、如图,AB是O的直径,C是O上的点,过点C作O的切线交AB的延长线于点D若A=32,则D=_度3、如图,O的直径AB26,弦CDAB,垂足为E,OE:BE5:8,则CD的长为_4、如图,在射线AC上顺次截取,以为直径作交射线于、两点,则线段的长是_cm5、如图,已知是的直径,是的切线,连接交于点,连接若,则的度数是_三、解答题(5小题,
5、每小题10分,共计50分)1、如图,已知O为RtABC的内切圆,切点分别为D,E,F,且C90,AB13,BC12(1)求BF的长;(2)求O的半径r2、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点求证: 3、(1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与的位置关系进行分类图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明;(2)知识应用:如图4,若的半径为2,分别与相切于点A,B,求的长4、我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形如图1,与的三
6、边分别相切于点则叫做的外切三角形.以此类推,各边都和圆相切的四边形称为圆外切四边形如图2,与四边形ABCD的边AB,BC,CD,DA分别相切于点则四边形叫做的外切四边形(1)如图2,试探究圆外切四边形的两组对边与之间的数量关系,猜想: (横线上填“”,“”或“=”);(2)利用图2证明你的猜想(写出已知,求证,证明过程);(3)用文字叙述上面证明的结论: ;(4)若圆外切四边形的周长为相邻的三条边的比为,求此四边形各边的长5、如图,的两条弦(AB不是直径),点E为AB中点,连接EC,ED(1)直线EO与AB垂直吗?请说明理由;(2)求证:-参考答案-一、单选题1、D【解析】【分析】根据多边形内
7、角和公式可直接进行排除选项【详解】解:A、是一个三角形,其内角和为180;B、是一个四边形,其内角和为360;C、是一个五边形,其内角和为540;D、是一个六边形,其内角和为720;内角和最大的是六边形;故选D【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键2、C【解析】【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可【详解】解:F为的中点,故正确,FCMFAC,FCGACM+FCM,AMEFMCACM+FAC,AMEFMCFCGFCM,FCFM,故错误,ABCD,FHAC,AEMCGF90,CFH+FCG90,BAF+AME90,CFHB
8、AF,HCBF,故正确,AGF90,CAF+AFH90,180,180,故正确,故选:C【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题3、C【解析】【分析】根据垂径定理,解直角三角形知识,一一求解判断即可【详解】解:A、OCOB2,点E是OB的中点,OE1,CDAB,CEO90,CD2CE, ,本选项错误不符合题意;B、根据,缺少条件,无法得出半径是1,本选项错误,不符合题意;C、A30,COB60,OCOB,COB是等边三角形,BCOC,CDAB,CEDE,BCBD,OCODBCBD,四边形OCBD是菱形;故本选项正确
9、本选项符合题意D、四边形OCBD是平行四边形,OC=OD,所以四边形OCBD是菱形OCBC,OCOB,OCOBBC,BOC60,故本选项错误不符合题意故选:C【考点】本题考查了圆周角定理,垂径定理,菱形的判定和性质,等边三角形的判定和性质,正确的理解题意是解题的关键4、B【解析】【分析】最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解【详解】当点P在圆内时,最近点的距离为5cm,最远点的距离为11cm,则直径是16cm,因而半径是8cm;当点P在圆外时,最近点的距离为5cm,最远点的距离为11cm,则直径是6cm,因而半径是3cm;故选B【考点】本题
10、考查了点与圆的位置关系,利用线段的和差得出直径是解题关键,分类讨论,以防遗漏5、B【解析】【分析】连接BO,根据圆周角定理可得,再由圆内接三角形的性质可得OB垂直平分AC,再根据正弦的定义求解即可【详解】如图,连接OB,是的内接三角形,OB垂直平分AC,又,,又AD=8,AO=4,解得:,故答案选B【考点】本题主要考查了圆的垂径定理的应用,根据圆周角定理求角度是解题的关键6、A【解析】【详解】如图,连接OA,则在直角OMA中,根据勾股定理得到OA=点A与O的位置关系是:点A在O内 故选A 7、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,再根据
11、三角形内切圆的性质、三角形的面积公式即可得出答案【详解】解:如图,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键8、B【解析】【分析】O最长的弦就是直径从而不难求得半径的长【详解】解:O中最长的弦为8cm,即直径为8cm,O的半径为4cm故选:B.【考点】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键9、C【解析】【分析】当运动到正六边形的角上时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,再由锐角三角
12、函数的定义用表示出的长,可知圆形纸片不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键10、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”
13、,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键二、填空题1、6【解析】【分析】利用圆锥的底面周长等于侧面展开图的弧长可得圆锥侧面展开图的圆心角,求出侧面展开图中两点间的距离即为最短距离【详解】底面圆的半径为,圆锥的底面周长为23,设圆锥的侧面展开图的圆心角为n,解得n90,如图,AA的长就是小虫所走的最短路程,O=90,OA=OA=6,AA故答案为:6【考点】本题考查了圆锥的计算,考查圆锥侧面展开图中两点间距离
14、的求法;把立体几何转化为平面几何来求是解决本题的突破点2、26【解析】【详解】分析:连接OC,根据圆周角定理得到COD=2A,根据切线的性质计算即可详解:连接OC,由圆周角定理得,COD=2A=64,CD为O的切线,OCCD,D=90-COD=26,故答案为26点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键3、24【解析】【分析】连接OC,由题意得OE=5,BE=8,再由垂径定理得CE=DE,OEC=90,然后由勾股定理求出CE=12,即可求解【详解】解:连接OC,如图所示:直径AB=26,OC=OB=13,OE:BE=5:8,OE=5,BE=8,弦CD
15、AB,CE=DE,OEC=90,CE=12,CD=2CE=24,故答案为:24【考点】本题考查的是垂径定理、勾股定理等知识,熟练掌握垂径定理,由勾股定理求出CE的长是解题的关键4、6【解析】【分析】过点作于,连,根据垂径定理得,在中,利用含30度的直角三角形三边的关系可得到,再利用勾股定理计算出,由得到答案【详解】解:过点作于,连,如图则,在中,则,在中,则,则故答案为6【考点】本题考查了垂径定理,含30度的直角三角形三边的关系以及勾股定理,熟悉相关性质是解题的关键5、25【解析】【分析】先由切线的性质可得OAC=90,再根据三角形的内角和定理可求出AOD=50,最后根据“同弧所对的圆周角等于
16、圆心角的一半”即可求出B的度数【详解】解:是的切线,OAC=90,AOD=50,B=AOD=25故答案为:25【考点】本题考查了切线的性质和圆周角定理,掌握圆周角定理是解题的关键三、解答题1、(1)BF10;(2)r=2【解析】【分析】(1)设BFBDx,利用切线长定理,构建方程解决问题即可(2)证明四边形OECF是矩形,推出OECF即可解决问题【详解】解:(1)在RtABC中,C90,AB13,BC12,AC5,O为RtABC的内切圆,切点分别为D,E,F,BDBF,ADAE,CFCE,设BFBDx,则ADAE13x,CFCE12x,AE+EC5,13x+12x5,x10,BF10(2)连接
17、OE,OF,OEAC,OFBC,OECCOFC90,四边形OECF是矩形,OECFBCBF12102即r2【考点】本题考查三角形的内心,勾股定理,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、见解析【解析】【分析】过点O作OPAB,由等腰三角形的性质可知AP=BP,再由垂径定理可知CP=DP,故可得出结论【详解】证明:如图所示,过点O作OPAB,垂足为点P,由垂径定理可得PAPB,PCPD,PAPCPBPD,ACBD【考点】本题考查的是垂径定理,根据题意作出辅助线,利用垂径定理求解是解答此题的关键3、(1)见解析;(2)【解析】【分析】(1)如图2,当点O在ACB的内部,
18、作直径,根据三角形外角的性质和等腰三角形的性质可得结论;如图3,当O在ACB的外部时,作直径CD,同理可理结论;(2)如图4,先根据(1)中的结论可得AOB=120,由切线的性质可得OAP=OBP=90,可得OPA=30,从而得PA的长【详解】解:(1)如图2,连接CO,并延长CO交O于点D,OA=OC=OB,A=ACO,B=BCO,AOD=A+ACO=2ACO,BOD=B+BCO=2BCO,AOB=AOD+BOD=2ACO+2BCO=2ACB,ACB=AOB;如图3,连接CO,并延长CO交O于点D,OA=OC=OB,A=ACO,B=BCO,AOD=A+ACO=2ACO,BOD=B+BCO=2
19、BCO,AOB=AOD-BOD=2ACO-2BCO=2ACB,ACB=AOB;(2)如图4,连接OA,OB,OP,C=60,AOB=2C=120,PA,PB分别与O相切于点A,B,OAP=OBP=90,APO=BPO=APB=(180-120)=30,OA=2,OP=2OA=4,PA= 【考点】本题考查了切线长定理,圆周角定理等知识,掌握证明圆周角定理的方法是解本题的关键4、(1)=;(2)答案见解析;(3)圆外切四边形的对边之和相等;(4)4;10;12;6【解析】【分析】(1)根据圆外切四边形的定义猜想得出结论;(2)根据切线长定理即可得出结论;(3)由(2)可得出答案;(4)根据圆外切四
20、边形的性质求出第四边,利用周长建立方程求解即可得出结论【详解】(1)O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,猜想ABCDADBC,故答案为:(2)已知:四边形ABCD的四边AB,BC,CD,DA都于O相切于G,F,E,H,求证:ADBCABCD,证明:AB,AD和O相切,AGAH,同理:BGBF,CECF,DEDH,ADBCAHDHBFCFAGBGCEDEABCD,即:圆外切四边形的对边和相等(3)由(2)可知:圆外切四边形的对边和相等故答案为:圆外切四边形的对边和相等;(4)相邻的三条边的比为2:5:6,设此三边为2x,5x,6x,根据圆外切四边形的性质得,第
21、四边为2x6x5x3x,圆外切四边形的周长为32,2x5x6x3x16x32,x2,此四边形的四边的长为2x4,5x10,6x12,3x6即此四边形各边的长为:4,10,12,6【考点】此题是圆的综合题,主要考查了新定义圆的外切四边形的性质,四边形的周长,切线长定理,理解和掌握圆外切四边形的定义是解本题的关键5、(1)直线EO与AB垂直理由见解析;(2)证明见解析【解析】【分析】(1)依据垂径定理的推论平分弦(不是直径)的直径垂直于弦可得结论;(2)易证,由垂径定理可得结论.【详解】解:(1)直线EO与AB垂直理由如下:如图,连接EO,并延长交CD于F EO过点O,E为AB的中点,(2), EF过点O,垂直平分CD, 【考点】本题考查了垂径定理,灵活利用垂径定理及其推论是解题的关键.