收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx

上传人:a**** 文档编号:641362 上传时间:2025-12-12 格式:DOCX 页数:23 大小:387.33KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第1页
第1页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第2页
第2页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第3页
第3页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第4页
第4页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第5页
第5页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第6页
第6页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第7页
第7页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第8页
第8页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第9页
第9页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第10页
第10页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第11页
第11页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第12页
第12页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第13页
第13页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第14页
第14页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第15页
第15页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第16页
第16页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第17页
第17页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第18页
第18页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第19页
第19页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第20页
第20页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第21页
第21页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第22页
第22页 / 共23页
2022-2023学年度人教版九年级数学上册第二十二章二次函数必考点解析试题(含答案解析).docx_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次函数y = ax2 + bx + c(a0)的图象如图所示,则下列结论:4a + 2b + c 0;

2、y随x的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个2、若在同一直角坐标系中,作,的图像,则它们()A都关于y轴对称B开口方向相同C都经过原点D互相可以通过平移得到3、二次函数(,为常数,且中的与的部分对应值如下表:013353下列结论:该抛物线的开口向下;该抛物线的顶点坐标为(1,5);当时,随的增大而减少;3是方程的一个根,其中正确的个数为()A4个B3个C2个D1个4、二次函数yax2+bx+c的图象如图所示,则一次函数ybx+c的图象不经过()A第一象限B第二象限C第三

3、象限D第四象限5、在平面直角坐标系中,对于点,若,则称点P为“同号点”,下列函数的图象上不存在“同号点”的是()ABCD6、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD7、已知抛物线yax2bxc(ay2By1y2Cy10,对称轴x=-0,得b0 所以一次函数ybx+c的图象经过第一、二、三象限,不经过第四象限故选:D【考点】本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题5、C【解析】【分析】由题意,图象经过第一和第三象限的函数都是满足条件的,由此判断即可【详解】解:由题意,图象经

4、过第一和第三象限的函数都是满足条件的,函数的图象在二、四象限,不满足条件,故选:C【考点】本题考查了反比函数的性质,一次函数的性质,二次函数的性质可以用特值法进行快速的排除6、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时

5、,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质7、A【解析】【分析】根据二次函数图象的对称轴位置以及开口方向,可得C(5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,进而即可得到答案【详解】抛物线yax2bxc(ay2,故选A【考点】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键8、D【解析】【分析】由抛物线与轴没有公共点,可得,求得,求出抛物线的对称轴为直线,抛物线开口

6、向上,再结合已知当时,随的增大而减小,可得,据此即可求得答案.【详解】,抛物线与轴没有公共点,解得,抛物线的对称轴为直线 ,抛物线开口向上,而当时,随的增大而减小,实数的取值范围是,故选D【考点】本题考查了二次函数图象与x轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键.9、D【解析】【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式【详解】解:抛

7、物线 C 1:y(x3)22,其顶点坐标为(3,2)向左平移3个单位长度,得到抛物线C2抛物线C2的顶点坐标为(0,2)抛物线C2与抛物线C3关于 x轴对称抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数抛物线C3的顶点坐标为(0,2),二次项系数为1抛物线C3的解析式为yx22故选:D【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键10、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故选:A【考点】本题主要考查了二次函

8、数的定义,准确计算是解题的关键二、填空题1、【解析】【分析】根据图象可判断,由x=1时,y0,可判断【详解】由图象可得,a0,c0,b0,=b24ac0,对称轴为x=,abc0,4acb2,当时,y随x的增大而减小故正确,2a+b0,故正确,由图象可得顶点纵坐标小于2,则错误,当x=1时,y=a+b+c0,故错误故答案为:【考点】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定2、25【解析】【分析】设草莓的零售价为x元/千克,销售收入为y元,由题意得y=30x2+1500x11880,再根据二次函

9、数的性质解答即可【详解】解:设草莓的零售价为x元/千克,销售收入为y元,由题意得,y=x30030(x22)+1830(x22)=30x2+1500x11880,当时,y最大,当草莓的零售价为25元/千克时,种植户一天的销售收入最大故答案为:25【考点】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键3、39【解析】【分析】设销售单价为x元时,销售利润最大,单价利润为x-20元,销售数量为280-(x-30)10,根据公式利润=(售价-进价)销售数量通过配方可求利润最大值【详解】解:设销售单价为x元时,销售利润最大,单价利润为(x-20)元,销售数量为280-(x-30)10,利润

10、总额为y=(x-20)280-(x-30)10,化简得:y=-10x2+780x-11600,配方得:y=-10(x-39)2+3610,当单价为39元时,有最大利润3610元,故答案为:39【考点】本题考查了二次函数的应用,解本题的关键首先求列出函数关系式,再将方程配方,即可求最大值4、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案【详解】解:,该抛物线的顶点坐标为,且开口方向向上,当时,取得最小值,故答案为:1【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法5、y=x2 x【解析】【分析】根据已知得出三

11、角形的高,进而利用三角形面积公式求出即可.【详解】由题意得.故答案为.【考点】此题主要考查了根据几何问题列二次函数关系式,熟记三角形面积公式是解题关键.三、解答题1、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得, 解得: b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.2、(1)y=x2+2x+3;(2)S四边形ACFD= 4;Q点坐标为(1,4)或(,)或(,)【解析】【分析】此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已知点的坐标列方

12、程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标【详解】(1)由题意可得,解得,抛物线解析式为y=x2+2x+3;(2)y=x2+2x+3=(x1)2+4,F(1,4),C(0,3),D(2,3),CD=2,且CDx轴,A(1,0),S四边形ACFD=SACD+SFCD=23+2(43)=4;点P在线段AB上,DAQ不可能为直角,当AQD为直角三角形时,有ADQ=90或AQD=90,i当ADQ=90时,则DQAD,A(1,0),D(2,3),直线AD解析式为y=x+1,可设直线DQ解析式为y=x+b,把D(2,3)代入可求得b=5,直线DQ解析式为y=x+5,联立直线DQ

13、和抛物线解析式可得,解得或,Q(1,4);ii当AQD=90时,设Q(t,t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=(t3),设直线DQ解析式为y=k2x+b2,同理可求得k2=t,AQDQ,k1k2=1,即t(t3)=1,解得t=,当t=时,t2+2t+3=,当t=时,t2+2t+3=,Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,)【考点】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键3、(1);(2) 11;.【解析】【分析】(1)把点P(-2,3

14、)代入y=x2+ax+3中,即可求出a;(2)把m=2代入解析式即可求n的值;由点Q到y轴的距离小于2,可得-2m2,在此范围内求n即可.【详解】(1)解:把代入,得,解得.,顶点坐标为.(2)当m=2时,n=11,点Q到y轴的距离小于2,|m|2,-2m2,2n11.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键4、(1)450千克;(2)当月销售利润为元时,每千克水果售价为元或元;(3)当该优质水果每千克售价为元时,获得的月利润最大【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为元,根据题意列方程解答即可;

15、(3)设月销售利润为元,每千克水果售价为元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可【详解】解:当售价为元/千克时,每月销售量为千克设每千克水果售价为元,由题意,得即整理,得配方,得解得当月销售利润为元时,每千克水果售价为元或元;设月销售利润为元,每千克水果售价为元,由题意,得即配方,得,当时,有最大值,当该优质水果每千克售价为元时,获得的月利润最大【考点】此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算5、(1)yx2+2x+3;(2)当t=时,PM有最大值,最大值为;(3)(0,1)或(,)或(,)

16、【解析】【分析】(1)运用待定系数法即可解决;(2)依题意得P(t,t2+2t+3),表示M点坐标,再求出PM长的函数表达式,依据二次函数性质求最值;(3)运用配方法求顶点D坐标,由以B,D,E,F为顶点的四边形能为平行四边形,且EFBD,可得EFBD,设点E(m,m+1),则F(m,m2+2m+3),EF,建立方程求解即可求得符合题意的点E坐标【详解】解:(1)把A(1,0),C(2,3)代入yx2+bx+c得,解得,抛物线的解析式为:yx2+2x+3;故答案为:yx2+2x+3;(2)设直线AC的解析式为y=mx+n,把A(1,0),C(2,3)代入得,解得,直线AC的解析式为y=x+1,

17、依题意得,P(t,t2+2t+3),M(t,t+1),PM=t2+2t+3-(t+1)= t2+t+2=-(t-)2+,当t=时,PM有最大值,最大值为;(3)yx2+2x+3(x1)2+4顶点D(1,4),把x=1代入y=x+1得,y=2,B(1,2),BD2,设点E(m,m+1),则F(m,m2+2m+3),EF,EFBD,当EFBD时,以B,D,E,F为顶点的四边形能为平行四边形2,当时,解得:m10,m21(舍去),当时,解得m3,m4;点E的坐标为:(0,1)或(,)或(,)【考点】本题属于中考压轴题,与二次函数有关的代数几何综合题,涉及知识点多,综合性较强,难度较大,解题时必须熟练掌握并灵活运用相关性质和定理,还要注意数形结合,分类讨论;此题主要考查了二次函数图象和性质,待定系数法求函数解析式,平行四边形性质等

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1