1、人教版九年级数学上册第二十二章二次函数定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,二次函数yx22xc的图象与x轴交于A、C两点,与y轴交于点B(0,3),若P是x轴
2、上一动点,点D(0,1)在y轴上,连接PD,则PDPC的最小值是()A4B22C2D2、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米3、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A(1,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)4、将抛物线C1:y(x3)22向左平移3个单位长度,得到抛物线C2
3、,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()Ayx22Byx22Cyx22Dyx225、若函数y(a1)x2+2x+a21是二次函数,则()Aa1Ba1Ca1Da16、在平面直角坐标系中,对于点,若,则称点P为“同号点”,下列函数的图象上不存在“同号点”的是()ABCD7、二次函数的图像如图所示,下列结论正确的是()ABCD有两个不相等的实数根8、如果y=(m-2)x是关于x的二次函数,则m=()A-1B2C-1或2Dm不存在9、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD10、已知二
4、次函数的图象上有两点A(x1,2023)和B(x2,2023),则当时,二次函数的值是()A2020B2021C2022D2023第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示四个二次函数的图象中,分别对应的是yax2;ybx2;ycx2;ydx2则a、b、c、d的大小关系为_2、从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度(单位:)与它距离喷头的水平距离(单位:)之间满足函数关系式,喷出水珠的最大高度是_ 3、抛物线图象与轴无交点,则的取值范围为;4、如果抛物线的最高点是坐标轴的原点,那么的取值范围是_5、定义:
5、为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:当时,函数图象的对称轴是轴;当时,函数图象过原点;当时,函数有最小值;如果,当时,随的增大而减小,其中所有正确结论的序号是_三、解答题(5小题,每小题10分,共计50分)1、如图1,抛物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四边形ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标2、如图
6、,已知抛物线yx2+bx+c与一直线相交于A(1,0),C(2,3)两点,与y轴交于点N,其项点为D(1)填空:抛物线的解析式为 ;(2)若P是抛物线上位于直线AC上方的一个动点,设点P的横坐标为t,过点P作y轴的平行线交AC与M,当t为何值时,线段PM的长最大,并求其最大值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EFBD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,请直接写出点E的坐标;若不能,请说明理由3、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个如果
7、调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?4、如图,抛物线的顶点为A(h,1),与y轴交于点B,点F(2,1)为其对称轴上的一个定点(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PFd;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使DF
8、Q的周长最小,并求此时DFQ周长的最小值及点Q的坐标5、如图,抛物线与直线分别相交于、两点,其中点在轴上,且此抛物线与轴的一个交点为(1)求抛物线的解析式(2)在抛物线对称轴上找一点,使的周长最小,请求出这个周长的最小值-参考答案-一、单选题1、A【解析】【分析】过点P作PJBC于J,过点D作DHBC于H根据,求出的最小值即可解决问题【详解】解:过点P作PJBC于J,过点D作DHBC于H二次函数yx22x+c的图象与y轴交于点B(0,3),c3,二次函数的解析式为yx22x3,令y0,x22x30,解得x1或3,A(1,0),B(0,-3),OBOC3,BOC90,OBCOCB45,D(0,1
9、),OD1,BD4,DHBC,DHB90,设,则,,PJCB,DP+PJ的最小值为,的最小值为4故选:A【考点】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题2、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求解【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,BC=10,点B(5,0),0=a(5)2+,a=-,大孔所在抛物线解析式为y=-x2
10、+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14,点E的横坐标为-7,点E坐标为(-7,-),-=m(xb)2,x1=+b,x2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-,-=-(xb)2,x1=+b,x2=-+b,单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故选:B【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答3、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根
11、据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标4、D【解析】【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式【详解
12、】解:抛物线 C 1:y(x3)22,其顶点坐标为(3,2)向左平移3个单位长度,得到抛物线C2抛物线C2的顶点坐标为(0,2)抛物线C2与抛物线C3关于 x轴对称抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数抛物线C3的顶点坐标为(0,2),二次项系数为1抛物线C3的解析式为yx22故选:D【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键5、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故选:A【考点】本题主要考查了
13、二次函数的定义,准确计算是解题的关键6、C【解析】【分析】由题意,图象经过第一和第三象限的函数都是满足条件的,由此判断即可【详解】解:由题意,图象经过第一和第三象限的函数都是满足条件的,函数的图象在二、四象限,不满足条件,故选:C【考点】本题考查了反比函数的性质,一次函数的性质,二次函数的性质可以用特值法进行快速的排除7、C【解析】【分析】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0;由对称轴为x=1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c0,结合b=-2a可得 3a+c0;观察图象可知抛物线
14、的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0,故A选项错误;对称轴x=1,b=-2a,即2a+b=0,故B选项错误;当x=-1时, y=a-b+c0,又b=-2a, 3a+c0,故C选项正确;抛物线的顶点为(1,3),的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【考点】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0)的图象,当a0,开口向上,函数有最小值,a0,开口向下,函数有最大值
15、;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c0,抛物线与y轴的交点在x轴的上方;当=b2-4ac0,抛物线与x轴有两个交点8、A【解析】【分析】根据二次函数的定义知m2-m=2,且m-2,解出即可.【详解】依题意,解得m=-1,故选:A.【考点】此题主要考查二次函数的定义,需要注意二次项系数不为零.9、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y
16、)一定在抛物线P上,抛物线的解析式为,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质10、C【解析】【分析】根据A、B两点纵坐标一样,且都在函数图像上,得出x1、x2是方程2020x2+2021x+2022=2023的两个根,由韦达定理得到,代入解析式即可得解【详解】解:二次函数的图象上
17、有两点A(,2023)和B(,2023),、是方程的两个根,当时,有:,故选C【考点】本题考查了二次函数与一元二次方程的关系、韦达定理;关键在于能发现题干所给条件的特点,会运用韦达定理二、填空题1、abdc【解析】【分析】设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小【详解】因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),所以,abdc【考点】本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小2、3【解析】【分析】把二次函数化为顶点式,进而即可求解【详解】解:,当x=1时,故答案是:3【考点】本题主要考查二次
18、函数的图像和性质,掌握二次函数的顶点式,是解题的关键3、【解析】【分析】根据题意和题目中的函数解析式,可以得到顶点的纵坐标小于0,然后代入数据计算即可【详解】解:抛物线图象与轴无交点,该抛物线开口向下,且,即: ,解之得:,故答案为:【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,明确题意,利用二次函数的性质解答是解答本题的关键4、【解析】【分析】根据函数图像有最高点可得出开口向下,即可得出答案;【详解】抛物线的最高点是坐标轴的原点,抛物线开口向下,m+10,故答案是【考点】本题主要考查了根据二次函数的开口方向求参数,准确分析判断是解题的关键5、【解析】【分析】利用二次函数的性质根
19、据特征数,以及的取值,逐一代入函数关系式,然判断后即可确定正确的答案【详解】解:当时,把代入,可得特征数为,函数解析式为,函数图象的对称轴是轴,故正确;当时,把代入,可得特征数为,函数解析式为,当时,函数图象过原点,故正确;函数 当时,函数图像开口向上,有最小值,故正确;当时,函数图像开口向下,对称轴为:时,可能在函数对称轴的左侧,也可能在对称轴的右侧,故不能判断其增减性,故错误;综上所述,正确的是,故答案是:【考点】本题考查了二次函数的图像与性质,二次函数的对称轴等知识点,牢记二次函数的基本性质是解题的关键三、解答题1、(1)y=x2+2x+3;(2)S四边形ACFD= 4;Q点坐标为(1,
20、4)或(,)或(,)【解析】【分析】此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已知点的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标【详解】(1)由题意可得,解得,抛物线解析式为y=x2+2x+3;(2)y=x2+2x+3=(x1)2+4,F(1,4),C(0,3),D(2,3),CD=2,且CDx轴,A(1,0),S四边形ACFD=SACD+SFCD=23+2(43)=4;点P在线段AB上,DAQ不可能为直角,当AQD为直角三角形时,有ADQ=90或AQD=90,i当ADQ=90时,则DQAD,A(1,0),D(2,3),
21、直线AD解析式为y=x+1,可设直线DQ解析式为y=x+b,把D(2,3)代入可求得b=5,直线DQ解析式为y=x+5,联立直线DQ和抛物线解析式可得,解得或,Q(1,4);ii当AQD=90时,设Q(t,t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=(t3),设直线DQ解析式为y=k2x+b2,同理可求得k2=t,AQDQ,k1k2=1,即t(t3)=1,解得t=,当t=时,t2+2t+3=,当t=时,t2+2t+3=,Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,)【考点】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的
22、图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键2、(1)yx2+2x+3;(2)当t=时,PM有最大值,最大值为;(3)(0,1)或(,)或(,)【解析】【分析】(1)运用待定系数法即可解决;(2)依题意得P(t,t2+2t+3),表示M点坐标,再求出PM长的函数表达式,依据二次函数性质求最值;(3)运用配方法求顶点D坐标,由以B,D,E,F为顶点的四边形能为平行四边形,且EFBD,可得EFBD,设点E(m,m+1),则F(m,m2+2m+3),EF,建立方程求解即可求得符合题意的点E坐标【详解】解:(1)把A(1,0),C(2,3)代入yx2+bx+c得,解得,抛物线的解
23、析式为:yx2+2x+3;故答案为:yx2+2x+3;(2)设直线AC的解析式为y=mx+n,把A(1,0),C(2,3)代入得,解得,直线AC的解析式为y=x+1,依题意得,P(t,t2+2t+3),M(t,t+1),PM=t2+2t+3-(t+1)= t2+t+2=-(t-)2+,当t=时,PM有最大值,最大值为;(3)yx2+2x+3(x1)2+4顶点D(1,4),把x=1代入y=x+1得,y=2,B(1,2),BD2,设点E(m,m+1),则F(m,m2+2m+3),EF,EFBD,当EFBD时,以B,D,E,F为顶点的四边形能为平行四边形2,当时,解得:m10,m21(舍去),当时,
24、解得m3,m4;点E的坐标为:(0,1)或(,)或(,)【考点】本题属于中考压轴题,与二次函数有关的代数几何综合题,涉及知识点多,综合性较强,难度较大,解题时必须熟练掌握并灵活运用相关性质和定理,还要注意数形结合,分类讨论;此题主要考查了二次函数图象和性质,待定系数法求函数解析式,平行四边形性质等3、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【解析】【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)
25、(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,当销售单价是70元或80元时,该网店每星期的销售利润是2400元答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,最大值为2450,当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元答:当销售单价是75元时,该
26、网店每星期的销售利润最大,最大利润是2450元【考点】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题4、(1);(2)见解析;(3),【解析】【分析】(1)由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,把点B坐标代入求出a即可(2)由题意P(m,),求出d2,PF2(用m表示)即可解决问题(3)如图,过点Q作QH直线l于H,过点D作DN直线l于N因为DFQ的周长=DF+DQ+FQ,DF是定值=,推出DQ+QF的值最小时,DFQ的周长最小,再根据垂线段最短解决问题即可【详解】解:(1)设抛物线的函数解析式为由题意,抛物线
27、的顶点为又抛物线与轴交于点抛物线的函数解析式为(2)证明:P(m,n),P(m,),F(2,1),d2=PF2,PF=d(3)如图,过点Q作QH直线l于H,过点D作DN直线l于NDFQ的周长=DF+DQ+FQ,DF是定值=,DQ+QF的值最小时,DFQ的周长最小,QF=QH,DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,DQ+QH的最小值为6,DFQ的周长的最小值为,此时Q(4,-)【考点】本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问
28、题5、(1);(2)【解析】【分析】(1)利用的解析式求解的坐标,把,代入,利用待定系数法列方程组,解方程组可得答案;(2)联立两个函数解析式,求解的坐标,线段的长度, 如图,要使的周长最小,则最小,设二次函数与轴的另一交点为,抛物线的对称轴为: 点,连接 交对称轴于 ,此时,最小,再利用勾股定理求解,从而可得答案【详解】.解:(1)抛物线与直线交于轴上一点,令 则 点把,代入得:,解得:,抛物线的解析式是;(2)将直线与二次函数联立得方程组: 解得:或, ,如图,要使的周长最小,则最小,设二次函数与轴的另一交点为, 抛物线的对称轴为: 点,连接 交对称轴于 ,此时,最小,此时:,的周长最小值为【考点】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,利用轴对称的性质求解三角形的周长的最小值,掌握以上知识是解题的关键