收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx

上传人:a**** 文档编号:641230 上传时间:2025-12-12 格式:DOCX 页数:39 大小:1.31MB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第1页
第1页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第2页
第2页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第3页
第3页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第4页
第4页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第5页
第5页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第6页
第6页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第7页
第7页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第8页
第8页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第9页
第9页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第10页
第10页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第11页
第11页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第12页
第12页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第13页
第13页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第14页
第14页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第15页
第15页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第16页
第16页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第17页
第17页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第18页
第18页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第19页
第19页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第20页
第20页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第21页
第21页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第22页
第22页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第23页
第23页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第24页
第24页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第25页
第25页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第26页
第26页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第27页
第27页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第28页
第28页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第29页
第29页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第30页
第30页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第31页
第31页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第32页
第32页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第33页
第33页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第34页
第34页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第35页
第35页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第36页
第36页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第37页
第37页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第38页
第38页 / 共39页
2022-2023学年度人教版九年级数学上册第二十三章旋转必考点解析试题(含答案解析).docx_第39页
第39页 / 共39页
亲,该文档总共39页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中既是中心对称图形,又是轴对称图形的是()ABCD2、小明把一副三角板按如图所示叠放在一起,固定三角板A

2、BC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180)若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A15或45B15或45或90C45或90或135D15或45或90或1353、如图,AOB中,OA4,OB6,AB2,将AOB绕原点O旋转90,则旋转后点A的对应点A的坐标是()A(4,2)或(4,2)B(2,4)或(2,4)C(2,2)或(2,2)D(2,2)或(2,2)4、如图,在中,将绕点逆时针旋转到的位置,使得,则的度数是()ABCD5、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD6、如图,在正方形ABCD中,将边BC绕点B逆时针旋转至,连接

3、,若,则线段BC的长度为()A4B5CD7、将按如图方式放在平面直角坐标系中,其中,顶点的坐标为,将绕原点逆时针旋转,每次旋转60,则第2023次旋转结束时,点对应点的坐标为()ABCD8、如图,在中,将绕点C逆时针旋转得到,点A,B的对应点分别为D,E,连接当点A,D,E在同一条直线上时,下列结论一定正确的是()ABCD9、2022年新年贺词中提到“人不负青山,青山定不负人”,下列四个有关环保的图形中,是轴对称图形,但不是中心对称图形的是()ABCD10、如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60得到线段AC若点C的坐标为,则m的值为()ABCD第卷(

4、非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,直线,垂足为点是直线上的两点,且直线绕点按逆时针方向旋转,旋转角度为(1)当时,在直线上找点,使得是以为顶角的等腰三角形,此时_(2)当在什么范围内变化时,直线上存在点,使得是以为顶角的等腰三角形,请用不等式表示的取值范围:_2、如图,在ABC中,BAC=90,AB=AC=10cm,点D为ABC内一点,BAD=15,AD=6cm,连接BD,将ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为_cm.3、如图,在平面直角坐标系中,等腰直角三角形OAB,点O为坐标原点,点

5、B在x轴上,点A的坐是(1,1)若将绕点O顺时针方向依次旋转45后得到,可得,则的坐标是_4、如图,正方形的边长为4,点E是对角线上的动点(点E不与A,C重合),连接交于点F,线段绕点F逆时针旋转得到线段,连接下列结论:;若四边形的面积是正方形面积的一半,则的长为;其中正确的是_(填写所有正确结论的序号)5、如图,在RtABC中,ACB90,点D为AB的中点,点P在AC上,且CP1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ当ADQ90时,AQ的长为_三、解答题(5小题,每小题10分,共计50分)1、已知和都是等腰直角三角形,(1)如图1,连接,求证:;(2)将绕点O顺时针旋

6、转如图2,当点M恰好在边上时,求证:;当点A,M,N在同一条直线上时,若,请直接写出线段的长2、如图1,D为等边ABC内一点,将线段AD绕点A逆时针旋转60得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F(1)求证:BDCE;(2)如图2,连接FA,小颖对该图形进行探究,得出结论:BFCAFBAFE小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由3、图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段的端点均在格点上,分别按要求画出图形(1)在图1中画出等腰三角形,且点C在格点上(画出一个即可)(2)在图2中画出以为边的菱形,且点D,

7、E均在格点上4、如图,P是等边内的一点,且,将绕点B逆时针旋转,得到(1)旋转角为_度;(2)求点P与点Q之间的距离;(3)求的度数;(4)求的面积5、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180后的线段A2B2-参考答案-一、单选题1、C【解析】【详解】解:选项A,B中的图形是轴对称图形,不是中心对称图形,故A,B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意,故选C【考点】本题考

8、查的是轴对称图形与中心对称图形的识别,把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“轴对称图形与中心对称图形的定义”是解本题的关键.2、D【解析】【分析】分四种情况讨论,由平行线的性质和旋转的性质可求解【详解】解:设旋转的度数为,若DEAB,则E=ABE=90,=90-30-45=15,若BEAC,则ABE=180-A=120,=120-30-45=45,若BDAC,则ACB=CBD=90,=90,当点C,点B,点E共线时,ACB=DEB=90,ACDE,=180-45=135,综上三角板DE

9、F旋转的度数可能是15或45或90或135故选:D【考点】本题考查了旋转的性质,平行线的性质,利用分类讨论思想解决问题是本题的关键3、C【解析】【分析】先求出点A的坐标,再根据旋转变换中,坐标的变换特征求解;或根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A的坐标【详解】过点A作于点C在RtAOC中, 在RtABC中, OA4,OB6,AB2,点A的坐标是根据题意画出图形旋转后的位置,如图,将AOB绕原点O顺时针旋转90时,点A的对应点A的坐标为;将AOB绕原点O逆时针旋转90时,点A的对应点A的坐标为故选:C【考点】本题考查了解直角三角形、旋转中点的坐标变换特征及旋转的性质(a,b)

10、绕原点顺时针旋转90得到的坐标为(b,-a),绕原点逆时针旋转90得到的坐标为(b,a)4、C【解析】【分析】根据旋转的性质得AC=AC,BAB=CAC,再根据等腰三角形的性质得ACC=ACC,然后根据平行线的性质由CCAB得ACC=CAB=70,则ACC=ACC=70,再根据三角形内角和计算出CAC=40,所以BAB=40【详解】绕点逆时针旋转到的位置,故选C.【考点】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角也考查了平行线的性质5、B【解析】【分析】利用轴对称图形和中心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中

11、心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关键6、D【解析】【分析】根据旋转的性质,可知BCBC取点O为线段CC的中点,并连接BO根据等腰三角形三线合一的性质、正方形的性质及直角三角形的性质,可证得RtOBC RtCCD,从而证得OCCD,BOC C,再利用勾股定理即可求解【详解】解:如图,取点O为线段CC的中点,并连接BO依题意得,BCBCBOC CBOC90在正方形ABCD中

12、,BCCD,BCD90OCBCCD90又C CD 90CDCCCD90OCBCDC在RtOBC和RtCCD中RtOBC RtCCD(AAS)OCCD2C C2 OC 224BOC C4在RtBOC中BC故选:D【考点】本题考查了旋转的性质、正方形的性质、等腰三角形的性质、直角三角形的性质、全等三角形的判定和性质及勾股定理的运用等知识,解题的关键是辅助线的添加7、A【解析】【分析】根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及长,即可求出,第3、4、5次分别利用关于原点中心对称,即可

13、求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案【详解】解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点作轴的垂线,垂足为,如下图所示:由的坐标为可知:,在中, 由旋转性质可知:, , 在与中: , 此时点对应坐标为,当第二次旋转时,如下图所示:此时A点对应点的坐标为当第3次旋转时,第3次的点A对应点与A点中心对称,故坐标为当第4次旋转时,第4次的点A对应点与第1次旋转的A点对应点中心对称,故坐标为当第5次旋转时,第5次的点A对应点与第2次旋转的A点对应点中心对称,故坐标为第6次旋转时,与A点重合故前6次旋转,点A对

14、应点的坐标分别为:、由于,故第2023次旋转时,A点的对应点为故选:A【考点】本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过旋转和中心对称求解对应点坐标,是求解该题的关键8、D【解析】【分析】由旋转可知,即可求出,由于,则可判断,即A选项错误;由旋转可知,由于,即推出,即B选项错误;由三角形三边关系可知,即可推出,即C选项错误;由旋转可知,再由,即可证明为等边三角形,即推出即可求出,即证明,即D选项正确;【详解】由旋转可知,点A,D,E在同一条直线上,故A选项错误,不符合题意;由旋转可知,为钝角,故B选项错误,不符合题意;,故C选项错

15、误,不符合题意;由旋转可知,为等边三角形,故D选项正确,符合题意;故选D【考点】本题考查旋转的性质,三角形三边关系,等边三角形的判定和性质以及平行线的判定利用数形结合的思想是解答本题的关键9、D【解析】【分析】轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称根据轴对称图形、和中心对称图形的概念,即可完成解题【详解】解:根据轴对称和中心对称的概念,选项A、B、C、D中,是轴对称图形的是B、D,是中心对称图形的

16、是B故选:D【考点】本题主要轴对称图形、中心对称图形的概念,熟练掌握知识点是解答本题的关键10、C【解析】【分析】过C作CDx轴于D,CEy轴于E,根据将线段AB绕点A按逆时针方向旋转60得到线段AC,可得ABC是等边三角形,又A(0,2),C(m,3),即得,可得,从而,即可解得【详解】解:过C作CDx轴于D,CEy轴于E,如图所示:CDx轴,CEy轴,CDO=CEO=DOE90,四边形EODC是矩形,将线段AB绕点A按逆时针方向旋转60得到线段AC,ABAC,BAC60,ABC是等边三角形,ABACBC,A(0,2),C(m,3),CEmOD,CD3,OA2,AEOEOACDOA1,在Rt

17、BCD中,在RtAOB中,OBBDODm,化简变形得:3m422m2250,解得:或(舍去),故C正确故选:C【考点】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度二、填空题1、(1)或;(2)45135且90【解析】【分析】(1)先求出旋转后与的夹角,然后根据题意以点B为圆心,的长为半径作弧,与直线的交点P即为所求,利用锐角三角函数即可求出BC和OC,再利用勾股定理求出PC,从而求出结论;(2)当由图可知:当BCAB且A、B、P不共线时,直线上存在点,使得是以为顶角的等腰三角形,求出当BC=AB=时,的度数,然后根据题意即可求出结论【详解】解:

18、(1)当时,此时与的夹角为9060=30以点B为圆心,的长为半径作弧,与直线的交点P即为所求,即BP=AB=,过点B作BC, BC=OBsin30=1BP,OC=OBcos30=在直线上存在两个P点满足题意根据勾股定理PC=OP=OCPC或OP=OCPCOP=或故答案为:或;(2)当由图可知:当BCAB且A、B、P不共线时,直线上存在点,使得是以为顶角的等腰三角形,当BC=AB=时,sinBOC=BOC=45当点B在直线右侧时,90BOC=45;当点B在直线左侧时,90BOC=135;BCAB且A、B、P不共线时45135且90故答案为:45135且90【考点】此题考查的是锐角三角函数、作等腰

19、三角形和勾股定理,掌握锐角三角函数、分类讨论的数学思想、勾股定理和利用极限思想求取值范围是解决此题的关键2、【解析】【分析】过点A作AHDE,垂足为H,由旋转的性质可得 AE=AD=6,CAE=BAD=15,DAE=BAC=90,再根据等腰直角三角形的性质可得HAE=45,AH=3,进而得HAF=30,继而求出AF长即可求得答案.【详解】过点A作AHDE,垂足为H,BAC=90,AB=AC,将ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,AE=AD=6,CAE=BAD=15,DAE=BAC=90,DE=,HAE=DAE=45,AH=DE=3,HAF=HAE-CAE=30,AF=

20、,CF=AC-AF=,故答案为.【考点】本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,解直角三角形等知识,正确添加辅助线构建直角三角形、灵活运用相关知识是解题的关键.3、【解析】【分析】根据题意求出:,的坐标,推导出每旋转8次为一个循环,再由,求出对应的点坐标即可【详解】解:根据题意得:, ,可推导一般性规律:点坐标的变化每旋转8次为一个循环, ,的坐标是 故答案为:【考点】本题主要考查了图形的旋转,点坐标的规律探究解题的关键在于推导出一般性规律4、【解析】【分析】过E作EMBC,ENCD,可证BEMFEN得BE=EF,故正确;可证四边形BEFG是正方形得EBG=90,BE=BG,可证

21、ABE=CBG,进而得到ABECBG,所以BAE=BCG,得BCA+BCG=90,即ACG=90,可证正确;由可求BE=,过E作EHAB,则AEH=180-BAC-AHE=45,知AH=HE,设AH=HE=x,则BH=4-x,由,得到AH=HE=2,从而得到,知错误;由可知,ABECBG,所以AE=CG,而CG+CE=AE+CE=AC可求,正确【详解】解:过E作EMBC,ENCD四边形ABCD是正方形,AC平分BCDEM=ENEMC=MCN=ENC=90MEN=90EFBEBEM+MEF=FEN+MEF=90BEM=FENEMB=ENF=90,EM=ENBEMFENBE=EF故正确;BEF=E

22、FG=90,EF=FG,BE=EFBE=FG,BEFG四边形BEFG是平行四边形BEF=90,BE=EF四边形BEFG是正方形EBG=90,BE=BGABC=90ABE+EBC=EBC+CBG=90ABE=CBG又AB=BC,BE=BGABECBGBAE=BCGBAE+BCA=90BCA+BCG=90,即ACG=90故正确; BE= 过E作EHAB四边形ABCD是正方形BAC=45AHE=90AEH=180-BAC-AHE=45AH=HE设AH=HE=x,则BH=4-x 解得 AH=HE=2 故错误;由可知,ABECBGAE=CGCG+CE=AE+CE=ACACB=45AC= CG+CE= 故

23、正确,所以答案为:【考点】本题是正方形综合题,主要考查了旋转的性质,正方形的判定与性质,角平分线的性质,勾股定理,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质,综合运用正方形的判定与性质定理,勾股定理等知识是解题的关键5、或#或【解析】【分析】连接,根据题意可得,当ADQ90时,分点在线段上和的延长线上,且,勾股定理求得即可【详解】如图,连接,在RtABC中,ACB90,根据题意可得,当ADQ90时,点在上,且,如图,在中,在中,故答案为:或【考点】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键三、解答题1、 (1)见解析;(2)见解析;或【解析

24、】【分析】(1)证明AMOBNO即可;(2)连接BN,证明AMOBNO,得到A=OBN=45,进而得到MBN=90,且OMN为等腰直角三角形,再在BNM中使用勾股定理即可证明;分两种情况分别画出图形即可求解【详解】解:(1)和都是等腰直角三角形,又,,,;(2)连接BN,如下图所示:,且,且为等腰直角三角形,在中,由勾股定理可知:,且;分类讨论:情况一:如下图2所示,设AO与NB交于点C,过O点作OHAM于H点,,为等腰直角三角形,,在中,,;情况二:如下图3所示,过O点作OHAM于H点,,为等腰直角三角形,,在中,,;故或【考点】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角

25、三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型2、(1)见解析;(3)正确,见解析【解析】【分析】(1)根据旋转的性质可得ADAE,DAE60,结合已知条件可得BACDAE,进而证明ABDACE,即可证明BDCE;(2)过A作BD,CF的垂线段分别交于点M,N,ABDACE,BDCE,由面积相等可得AMAN,证明RtAFMRtAFN,进而证明BFCAFBAFE60【详解】解:证明:(1)如图1,线段AD绕点A逆时针旋转60得到AE,ADAE,DAE60,BAC60,BACDAE,BADCAE,在ABD和ACE中,ABDACE(SAS),BDCE,(2)由

26、(1)可知ABDACE则ABDACE,又AGBCGF,BFCBAC60,BFE120,过A作BD,CF的垂线段分别交于点M,N,又ABDACE,BDCE,由面积相等可得AMAN,在RtAFM和RtAFN中,RtAFMRtAFN(HL),AFMAFN,BFCAFBAFE60【考点】本题考查了三角形全等的性质与判定,旋转的性质,正确的添加辅助线找到全等三角形并证明是解题的关键3、 (1)见解析(2)见解析【解析】【分析】利用轴对称图形、中心对称图形的特点画出符合条件的图形即可;(1)答案不唯一(2)【考点】本题考查了轴对称图形、中心对称图形的特点,熟练掌握特殊三角形与四边形的性质才能准确画出符合条

27、件的图形4、 (1)60(2)4(3)150(4)9【解析】【分析】(1)根据QCB是PAB绕点B逆时针旋转得到,可知ABC为旋转角即可得出答案,(2)连接PQ,根据等边三角形得性质得ABC60,BABC,由旋转的性质得BPBQ,PBQABC60,CQAP5,BPBQ4,PBQ60,于是可判断PBQ是等边三角形,所以PQPB4;(3)先利用勾股定理的逆定理证明PCQ是直角三角形,且QPC90,再加上BPQ60,然后计算BPQ+QPC即可(4)由直角三角形的性质可求CH,PH的长,由勾股定理和三角形的面积公式可求解(1)ABC是等边三角形,ABC60, QCB是PAB绕点B逆时针旋转得到的,旋转

28、角为60故答案为:60;(2)连接PQ,如图1,ABC是等边三角形,ABC60,BABC,QCB是PAB绕点B逆时针旋转得到的,QCBPAB,BPBQ,PBQABC60,CQAP5,BPBQ4,PBQ60,PBQ是等边三角形,PQPB4;(3)QC5,PC3,PQ4,而32+4252,PC2+PQ2CQ2,PCQ是直角三角形,且QPC90,PBQ是等边三角形,BPQ60,BPCBPQ+QPC60+90150;(4)如图2,过点C作CHBP,交BP的延长线于H,BPC150,CPH30,CHPC,PHHC,BH4,BC2BH2+CH2,SABCBC2,SABC)9【考点】本题考查了旋转的性质,等边三角形的判定与性质,全等三角形的性质,勾股定理的逆定理,掌握旋转的性质是本题的关键5、(1)画图见解析,(2)画图见解析【解析】【分析】(1)分别确定向右平移4个单位后的对应点,再连接即可;(2)分别确定绕原点O旋转180后的对应点,再连接即可.【详解】解:(1)如图,线段即为所求作的线段,(2)如图,线段即为所求作的线段,【考点】本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1