1、九年级数学上册第二十一章一元二次方程必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂
2、直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm,则可以列出关于x的方程是()Ax(262x)=80Bx(242x)=80C(x1)(262x)=80D(x-1)(252x)=802、元旦当天,小明将收到的一条微信,发送给若干人,每个收到微信的人又给相同数量的人转发了这条微信,此时收到这条微信的人共有157人,则小明给多少人发了微信()A10B11C12D133、下列方程中,有两个相等实数根的是()ABCD4、一元二次方程(m+1)x2-2mx+m2-10有两个异号根,则m的取值范围是()Am1Bm1且m-1Cm1D-1m15、方程的解是()A2或0B2或0C2D
3、2或06、已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程6+k+2=0的两个根,则k的值等于()A7B7或6C6或7D67、已知抛物线yax2bxc(ay2By1y2Cy1y2D不能确定8、某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A4B5C6D79、下列方程中,有实数根的方程是()ABCD10、抛物线yx2+1的对称轴是()A直线x1B直线x1C直线x0D直线y1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、设,是方程的两个实数根,则的值为_2、若x1、x2是一
4、元二次方程x22x0的两根,则x12+x22的值是_3、对于任意实数a、b,定义一种运算:,若,则x的值为_4、若多项式x2mx+n(m、n是常数)分解因式后,有一个因式是x2,则2mn的值为_5、若关于x的一元二次方程x2+mx+2n0有一个根是2,则m+n_三、解答题(5小题,每小题10分,共计50分)1、解下列方程:(1)x26x+81;(2)2x24x302、用指定方法解下列方程:(1)2x2-5x+10(公式法);(2)x2-8x+10(配方法)3、某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品牌服装平均每天可售出20件现服装店决定采取适当的降价措施,扩大销售量,
5、增加盈利经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件(1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠?(2)要想平均每天盈利2000元,可能吗?请说明理由4、一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为_件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?5、解方程:(1)x2x20;(2)3x(x2
6、)2x-参考答案-一、单选题1、A【解析】【分析】设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,然后根据花圃面积为80m2列关于x的一元一次方程即可【详解】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m由题意得:x(26-2x)=80故答案为A【考点】本题考查了根据题意列一元二次方程,理解题意、设出未知数、表示出相关的量、找到等量关系列方程是解答本题的关键2、C【解析】【分析】设小明发短信给x个人,根据每人只转发一次可得第一次转发共有(x+1)人收到了短信,第二次转发有(1+x+x2)人收到了短信,由题意可得方程人收到了短信=157,再解方程即可【详解】解
7、:设小明发短信给x个人,由题意得:1+x+x2=157,解得:x1=12,x2=-13(不合题意舍去),答:小明发短信给12个人,故选:C【考点】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程3、A【解析】【分析】根据根的判别式逐一判断即可【详解】A.变形为,此时=4-4=0,此方程有两个相等的实数根,故选项A正确;B.中=0-4=-40,此时方程无实数根,故选项B错误;C.整理为,此时=4+12=160,此方程有两个不相等的实数根,故此选项错误;D.中,=40,此方程有两个不相等的实数根,故选项D错误.故选:A.【考点】本题主要考查根的判别式,熟练掌握根
8、的情况与判别式间的关系是解题的关键4、B【解析】【分析】设方程两根为x1,x2,根据一元二次方程的定义和根与系数的关系求解即可【详解】解:设方程两根为x1,x2,根据题意得m+10,解得m1且m-1,x1x20,0,m的取值范围为m1且m-1故选:B【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程根与系数的关系5、B【解析】【分析】首先提公因式,再根据平方差公式分解因式,即可得出结论【详解】解:,或或,故选:B【考点】本题考查了高次方程,运用类比思想将高
9、次方程转化为二次方程或一次方程是解题的关键6、B【解析】【分析】当m=4或n=4时,即x=4,代入方程即可得到结论,当m=n时,即=(6)24(k+2)=0,解方程即可得到结论【详解】当m=4或n=4时,即x=4,方程为4264+k+2=0,解得:k=6;当m=n时,6+k+2=0,解得:,综上所述,k的值等于6或7,故选:B【考点】本题主要考查了一元二次方程的根、根的判别式以及等腰三角形的性质,由等腰三角形的性质得出方程有一个实数根为2或方程有两个相等的实数根是解题的关键7、A【解析】【分析】根据二次函数图象的对称轴位置以及开口方向,可得C(5,y1)距对称轴的距离比D(5,y2)距对称轴的
10、距离小,进而即可得到答案【详解】抛物线yax2bxc(ay2,故选A【考点】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键8、C【解析】【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x1)场球,第二个球队和其他球队打(x2)场,以此类推可以知道共打(1+2+3+x1)场球,然后根据计划安排15场比赛即可列出方程求解【详解】设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=5(不合题意,舍去),则共有6个班级参赛,故选:C【考点】本题考查了一元二次方程的应用,解题的关键是读懂题意,根据等量关系准确的列出方程9、D【解析】【分析】先移项,
11、再根据算术平方根的非负性即可判断A;根据根的判别式即可判断B;根据算术平方根的非负性得出且,即可判断C;方程两边都乘以,再求出方程的解,进行检验后即可判断D【详解】解:A、,移项,得,不论为何值,此方程无实数根,故本选项不符合题意;B、,此方程无解,即原方程无实数根,故本选项不符合题意;C、,且,此时不存在,即原方程无实数根,故本选项不符合题意;D、,方程两边都乘以,得,解得:,经检验是增根,是原方程的解,即原方程有实数根,故本选项符合题意;故选:D【考点】本题考查了解无理方程,算术平方根,四次方根,解分式方程等知识点,能把无理方程转化成有理方程和把分式方程转化成整式方程是解此题的关键10、C
12、【解析】【分析】由抛物线解析式可直接求得答案【详解】解:抛物线y=x2+1,抛物线对称轴为直线x=0,即y轴,故选C【考点】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)二、填空题1、【解析】【分析】由韦达定理可分别求出与的值,再化简要求的式子,代入即可得解【详解】解:由方程可知,故答案为:【考点】本题考查一元二次方程根与系数的关系,利用韦达定理可简便运算2、9【解析】【分析】利用一元二次方程根与系数的关系表示出x1+x22,x1x2,再根据完全平方公式的变形求x12+x22的值即可【详解】解:x1、x2是一元二
13、次方程x22x0的两根,x1+x22,x1x2,则x12+x22(x1+x2)22x1x242()4+59故答案为:9【考点】本题考查一元二次方程根与系数的关系和完全平方公式的变形熟练掌握一元二次方程根与系数的关系和完全平方公式是解题的关键3、或2【解析】【分析】根据新定义的运算得到,整理并求解一元二次方程即可【详解】解:根据新定义内容可得:,整理可得,解得,故答案为:或2【考点】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键4、4【解析】【分析】设另一个因式为x-a,因为整式乘法是因式分解的逆运算,所以将两个因式相乘后结果得x2mx+n,根据各项系数相等列式,计算可得
14、结论【详解】解:设另一个因式为xa,则x2mx+n=(x2)(xa)=x2ax2x+2a=x2(a+2)x+2a,得:, 2m-n=2(a+2)-2a=4,故答案为4【考点】本题是因式分解的意义,按多项式法则将分解的两个因式相乘,列等式或方程组即可求解5、2【解析】【分析】根据一元二次方程的解的定义把x2代入得到得 然后利用整体代入的方法进行计算【详解】2是关于x的一元二次方程的一个根,nm2,故答案为2【考点】本题考查了一元二次方程的解,掌握方程的解的定义是解决本题的关键.三、解答题1、(1)x1x23;(2)x1,x2【解析】【分析】(1)先移项,合并后根据完全平方公式进行变形,再开方,即
15、可得出一元一次方程,求出方程的解即可;(2)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可【详解】解:(1)x26x+81,x26x+8+10,x26x+90,(x3)20,x30,x1x23;(2)2x24x30,2x24x3,x22x,x22x+1+1,(x1)2,开方得:x1,x1,x2【考点】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键2、 (1)x1,x2(2)x14+,x24-【解析】【分析】(1)根据公式法,可得方程的解;(2)根据配方法,可得方程的解(1)解:a2,b-5,c1,b24ac(-5)2-42117,x,x1,x2
16、(2)解:移项得,并配方,得,即(x-4)215,两边开平方,得x4,x14+,x24-【考点】本题考查了解一元二次方程,配方法解一元二次方程的关键是配方,利用公式法解方程要利用根的判别式3、 (1)每件降价20元(2)不可能,理由见解析【解析】【分析】(1)根据题意列出方程,即每件服装的利润销售量=总盈利,再求解,把不符合题意的舍去;(2)根据题意列出方程进行求解即可(1)解:设每件服装降价x元由题意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,为使顾客得到较多的实惠,应取x=20;答:每件降价20元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到
17、较多的实惠;(2)解:不可能,理由如下:依题意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,=(-30)2-4600=900-2400=-15000,则原方程无实数解则不可能每天盈利2000元【考点】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程4、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.【解析】【分析】(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出23=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数每件盈利=每天销售这种商品利
18、润列出方程解答即可【详解】(1)若降价3元,则平均每天销售数量为20+23=26件(2)设每件商品应降价x元时,该商店每天销售利润为1200元根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20要求每件盈利不少于25元,x2=20应舍去,x=10答:每件商品应降价10元时,该商店每天销售利润为1200元【考点】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数每件盈利=每天销售的利润是解题关键5、 (1)x12,x21(2)x1,x22【解析】【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程;(1)解:x2x20,(x2)(x1)0,x20或x10,x12,x21(2)解:3x(x2)2x,3x(x2)(x2)0,(3x1)(x2)0,3x10或x20,x1,x22【考点】本题考查了因式分解法解一元二次方程:将方程的右边化为零,把方程的左边分解为两个一次因式的积,令每个因式分别为零,解这两个一元一次方程,它们的解就是原方程的解