收藏 分享(赏)

新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx

上传人:高**** 文档编号:640956 上传时间:2024-05-29 格式:DOCX 页数:11 大小:279.36KB
下载 相关 举报
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第1页
第1页 / 共11页
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第2页
第2页 / 共11页
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第3页
第3页 / 共11页
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第4页
第4页 / 共11页
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第5页
第5页 / 共11页
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第6页
第6页 / 共11页
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第7页
第7页 / 共11页
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第8页
第8页 / 共11页
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第9页
第9页 / 共11页
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第10页
第10页 / 共11页
新教材2022版高考人教A版数学一轮复习学案:2-5 指数与指数函数 WORD版含答案.docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.5指数与指数函数必备知识预案自诊知识梳理1.根式(1)根式的概念:式子na叫做根式,n叫做根指数,a叫做被开方数.(2)根式的性质:当n为奇数时,nan=a;当n为偶数时,nan=|a|=a,a0,-a,a0,m,nN*,n1).正数的负分数指数幂的意义是a-mn=1amn=1nam(a0,m,nN*,n1).0的正分数指数幂等于,0的负分数指数幂没有意义.(2)有理数指数幂的运算性质aras=(a0,r,sQ).(ar)s=(a0,r,sQ).(ab)r=(a0,b0,rQ).(3)无理数指数幂一般地,无理数指数幂a(a0,为无理数)是一个的实数.整数指数幂的运算性质也适用于实数指数幂.

2、3.指数函数的图象和性质函数y=ax(a0,且a1)0a1图象定义域R值域(0,+)性质(1)过定点(0,1),即x=0时,y=1(2)减函数(2)增函数1.指数函数y=ax(a0,且a1)的图象过三个定点:(1,a),(0,1),-1,1a.2.y=ax(a0,且a1)的图象特征:如图(a1a2a3a4),不论是a1,还是0a0,且a1时,函数y=ax与函数y=1ax的图象关于y轴对称.考点自诊1.判断下列结论是否正确,正确的画“”,错误的画“”.(1)4(-4)4=-4.()(2)nan与(na)n都等于a(nN*).()(3)(-1)24=(-1)12=-1.()(4)函数y=32x与y

3、=2x+1都不是指数函数.()(5)若aman,则mn.()2.(2020山东实验中学月考,3)已知12m12nn0B.0mnC.nm0D.0nm3.(2020广东广州模拟,4)已知函数f(x)=12x,则不等式f(a2-4)f(3a)的解集为()A.(-4,1)B.(-1,4)C.(1,4)D.(0,4)4.(2020天津卷,6)设a=30.7,b=13-0.8,c=log0.70.8,则a,b,c的大小关系为()A.abcB.bacC.bcaD.cab5.若函数y=(a2-1)x在R上为减函数,则实数a的取值范围是.关键能力学案突破考点指数幂的化简与求值【例1】(1)化简416x8y4(x

4、0,y0,b0).解题心得指数幂运算的一般原则:(1)有括号的先算括号里面的,没有括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.(5)运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.对点训练1化简下列各式:(1)a3b23ab2(a14b12)4a-13b13(a0,b0);(2)-278-23+(0.002)-12-10(5-2)-1+(2-3)0.考点指数函数的图象及其应用(多考向探究

5、)考向1指数函数型图象的判别【例2】(2020安徽马鞍山二模,理7)已知函数f(x)=ex-e-xx2,则f(x)的图象大致为()解题心得1.画指数函数y=ax(a0,且a1)的图象,应抓住三个关键点:(1,a),(0,1),-1,1a.2.已知函数解析式判断其图象一般是依据函数的单调性、奇偶性,再结合一些特殊点,判断所给的图象是否符合,若不符合则排除.对点训练2函数f(x)=1-e|x|的图象大致是()考向2指数函数图象的应用【例3】(1)若函数y=|3x-1|的图象与直线y=m有两个不同交点,则实数m的取值范围是.(2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是.解题心

6、得1.对于有关指数型函数图象的应用问题,一般是从最基本的指数函数的图象入手,通过平移、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.2.一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.对点训练3(1)(2020安徽蒙城月考,4)已知0a1,b1,b1,b0C.0a0D.0a1,b0,且a1)的图象有两个公共点,则a的取值范围是.变式发散1若本例(1)的条件变为:方程3|x|-1=m有两个不同实根,则实数m的取值范围是.变式发散2若本例(1)的条件变为:函数y=|3x-1|+m的图象不经过第二象限,则实数m的取值范围是.考点指数函数的性质及其应用

7、(多考向探究)考向1指数函数单调性的应用【例4】(1)(2020湖南永州二模,理3)已知a=0.40.3,b=0.30.3,c=0.30.4,则()A.acbB.abcC.cabD.bca(2)若x0是方程12x=x13的解,则x0属于区间()A.23,1B.12,23C.13,12D.0,13解题心得比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小;当底数、指数均不同时,可以利用中间值比较.对点训练4(1)(2019全国1,文3,理3)已知a=log20.2,b=20.2,c=0.20.

8、3,则()A.abcB.acbC.cabD.bca(2)当x(-,-1时,不等式(m2-m)4x-2x0恒成立,则实数m的取值范围是()A.(-2,1)B.(-4,3)C.(-3,4)D.(-1,2)考向2解简单的指数方程或指数不等式【例5】(1)不等式12x2-32-2x的解集是.(2)设函数f(x)=(12)x-7,x0,x,x0,若f(a)ag(x),当a1时,等价于f(x)g(x);当0a1时,等价于f(x)0在x(-,1时恒成立,则实数a的取值范围是.解题心得指数函数的综合问题,主要涉及单调性、奇偶性、最值问题,应在有关性质的基础上,结合指数函数的性质进行解决,而指数函数性质的重点是

9、单调性,注意利用单调性实现问题的转化.对点训练6(1)函数y=12x2+2x-1的值域是()A.(-,4)B.(0,+)C.(0,4D.4,+)(2)函数y=14x-12x+1在x-3,2上的值域是.【例1】若存在正数x使2x(x-a)1成立,则a的取值范围是()A.(-,+)B.(-2,+)C.(0,+)D.(-1,+)答案D解析不等式2x(x-a)1可变形为x-a12x.在同一平面直角坐标系内作出直线y=x-a与y=12x的图象.由题意,在(0,+)上,直线有一部分在曲线的下方.由图可知,-a-1.【例2】已知函数f(x)=2x-x-1,则不等式f(x)0的解集是()A.(-1,1)B.(

10、-,-1)(1,+)C.(0,1)D.(-,0)(1,+)答案D解析因为f(x)=2x-x-1,所以f(x)0等价于2xx+1,在同一直角坐标系中作出y=2x和y=x+1的图象.如图,两函数图象的交点坐标为(0,1),(1,2),不等式2xx+1的解为x1.所以不等式f(x)0的解集为(-,0)(1,+).故选D.2.5指数与指数函数必备知识预案自诊知识梳理2.(1)0(2)ar+sarsarbr(3)确定考点自诊1.(1)(2)(3)(4)(5)2.A因为指数函数y=12x在R上单调递减,所以由12m12nn0,故选A.3.B因为函数f(x)=12x在R上单调递减,所以由不等式f(a2-4)

11、f(3a),得a2-43a,解得-1a30.7=a30=1,c=log0.70.8log0.70.7=1,cab.故选D.5.(-2,-1)(1,2)由y=(a2-1)x在R上为减函数,得0a2-11,1a22,解得1a2或-2a-1.关键能力学案突破例1(1)D(2)85(1)416x8y4=(16x8y4)14=24(-x)8(-y)414=2414(-x)814(-y)414=2(-x)2(-y)=-2x2y.(2)原式=2432a32b-3210a32b-32=85.对点训练1解(1)原式=(a3b2a13b23)12ab2a-13b13=a32+16-1+13b1+13-2-13=a

12、b-1=ab.(2)原式=-278-23+1500-12-105-2+1=-82723+50012-10(5+2)+1=49+105-105-20+1=-1679.例2A函数的定义域为x|x0,故排除B,由函数的解析式易得f(x)=-f(-x),则函数为奇函数,故排除C,D,故选A.对点训练2A由题知f(x)=1-e|x|是偶函数,图象关于y轴对称,故排除B,D,又e|x|1,则f(x)0,故排除C,故选A.例3(1)(0,1)(2)-1,1(1)如图,函数y=|3x-1|的图象是由函数y=3x的图象向下平移一个单位长度后,再把位于x轴下方的图象沿x轴翻折到x轴上方得到的,而直线y=m的图象是

13、平行于x轴的一条直线.如图所示,由图象可得,如果曲线y=|3x-1|与直线y=m有两个公共点,则m的取值范围是(0,1).(2)曲线|y|=2x+1与直线y=b的图象如图所示.由图象可得,若|y|=2x+1与直线y=b没有公共点,则-1b1.故b的取值范围是-1,1.对点训练3(1)A(2)D(3)0,12(1)因为0a1,b-1,则函数y=ax+b的大致图象如图.由图象可知,y=ax+b的图象必定不经过第一象限.故选A.(2)由图象知f(x)是减函数,所以0a1,又由图象在y轴上的截距小于1,则a-b0,所以b0.故选D.(3)当0a1时,y=|ax-1|的图象如下图,因为y=2a与y=|a

14、x-1|的图象有两个交点,所以02a1.所以0a1时,y=|ax-1|的图象如下图,而此时直线y=2a不可能与y=|ax-1|的图象有两个交点.综上,a的取值范围是0,12.变式发散1(0,+)作出函数y=3|x|-1与y=m的图象如图所示,数形结合可得m的取值范围是(0,+).变式发散2(-,-1作出函数y=|3x-1|+m的图象如图所示.由图象知m-1,即m(-,-1.例4(1)B(2)C(1)因为y=0.3x是减函数,所以0.30.30.30.4,即cb1,即ab,则abc,故选B.(2)设f(x)=12x-x13,f(0)=10,f13=1213-1313,由幂函数y=x13单调递增,

15、得f13=1213-13130;f12=1212-1213,由指数函数y=12x单调递减,得f12=1212-12130.所以13x012.故选C.对点训练4(1)B(2)D(1)因为a=log20.220=1,又0c=0.20.30.20=1,所以acb.故选B.(2)(m2-m)4x-2x0在区间(-,-1上恒成立,m2-m12x在区间(-,-1上恒成立.y=12x在(-,-1上单调递减,当x(-,-1时,y=12x2,m2-m2,解得-1m3,或x-1(2)C(1)12x2-32-2x,12x2-32x,解得x3或x3,或x-1.(2)当a0时,不等式f(a)1可化为12a-71,则12

16、a8,即12a-3,则-3a0;当a0时,不等式f(a)1可化为a1,所以0a1.故实数a的取值范围是(-3,1),故选C.对点训练5(1)0,12(2)x=log23(1)f(x)=a+14x+1的图象过点1,-310,a+15=-310,解得a=-12,即f(x)=-12+14x+1.-16f(x)0,-1614x+1-120,1314x+112,24x+13,即14x2,0x12.(2)当x0时,原方程化为4x+2x-12=0,即(2x)2+2x-12=(2x-3)(2x+4)=0,解得2x=3,或2x=-4(舍).x=log23.当x0时,原方程化为4x-2x-10=0.令t=2x,则

17、t2-t-10=0(0t1).由求根公式得t=11+402均不符合题意,故x0,所以ex+11,所以02ex+12,所以-11-2ex+1-14x+12x.因为函数y=14x和y=12x在R上都是减函数,所以当x(-,1时,14x14,12x12,所以14x+12x14+12=34,从而得-14x+12x-34.故实数a的取值范围为-34,+.对点训练6(1)C(2)34,57(1)设t=x2+2x-1,则y=12t,且y=12t为关于t的减函数.因为t=(x+1)2-2-2,所以012t12-2=4,故所求函数的值域为(0,4.故选C.(2)因为x-3,2,若令t=12x,则t14,8.则y=t2-t+1=t-122+34.当t=12时,ymin=34;当t=8时,ymax=57.所以函数y的值域为34,57.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3