1、八年级数学上册第十一章实数和二次根式单元测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列二次根式中,最简二次根式是()ABCD2、下列等式成立的是()ABCD3、下列各式中正确的是()ABCD4、
2、若,则a,b,c的大小关系为()ABCD5、如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数的点P应落在A线段AB上B线段BO上C线段OC上D线段CD上6、若,则x的值等于()A4BC2D7、下列四种叙述中,正确的是()A带根号的数是无理数B无理数都是带根号的数C无理数是无限小数D无限小数是无理数8、计算:()A4B5C6D89、在四个实数,0,中,最小的实数是()AB0CD10、有下列说法:无理数是无限小数,无限小数是无理数;无理数包括正无理数、和负无理数;带根号的数都是无理数;无理数是含有根号且被开方数不能被开尽的数;是一个分数其中正确的有()A个B个C个D个第
3、卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 _, _2、如图,在纸面上有一数轴,点A表示的数为1,点B表示的数为3,点C表示的数为若子轩同学先将纸面以点B为中心折叠,然后再次折叠纸面使点A和点B重合,则此时数轴上与点C重合的点所表示的数是_3、若,则_4、125的立方根是_的算术平方根是_5、一个正数的两个平方根的和是_,商是_三、解答题(5小题,每小题10分,共计50分)1、设、是任意两个有理数,规定与之间的一种运算“”为:(1)求的值;(2)若,求的值.2、化简求值:,其中3、数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东
4、西,这是数学解题的一个重要原则”材料一:把根式进行化简,若能找到两个数m、n,是且,则把变成,开方,从而使得化简例如:化简解:材料二:在直角坐标系xOy中,对于点P(x,y)和Q(x,y)给出如下定义:若,则称Q点为P点的“横负纵变点”例如点(3,2)的“横负纵变点”为(3,2),点(,5)的“横负纵变点”为(,)请选择合适的材料解决下面的问题:(1)点(,)的“横负纵变点”为_;(2)化简:;(3)已知a为常数(),点M(,m)且,点M是点M的“横负纵变点”,求点M的坐标4、5、计算:(1)(2) (3)(4)(5)(6)-参考答案-一、单选题1、A【解析】【分析】根据最简二次根式的被开方数
5、不含分母,被开方数不含开得尽的因数或因式,可得答案【详解】解:A. ,是最简二次根式,故正确;B. ,不是最简二次根式,故错误;C. ,不是最简二次根式,故错误;D. ,不是最简二次根式,故错误.故选A.【考点】本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开得尽的因数或因式2、D【解析】【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断【详解】解:A. ,本选项不成立;B. ,本选项不成立;C. =,本选项不成立;D. ,本选项成立.故选:D.【考点】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键3、C【
6、解析】【分析】根据二次根式的性质化简即可【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、|a|,故本选项错误;故选:C【考点】此题考查了二次根式的性质,掌握基本性质是解题的关键4、C【解析】【分析】根据无理数的估算进行大小比较【详解】解:,又,故选:C【考点】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估算,理解相关概念是解题关键5、B【解析】【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案【详解】由被开方数越大算术平方根越大,得23,由不等式的性质得:-12-0.故选B.【考点】本题考查了实数与数轴,无理数大小的估算,解题
7、的关键正确估算无理数的大小.6、C【解析】【分析】先化简、合并等号左边的二次根式,再将系数化为,继而两边平方,进一步求解可得【详解】解:原方程化为,合并,得,即,故选:C【考点】本题主要考查二次根式的性质与化简,二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并7、C【解析】【分析】根据无理数的概念逐个判断即可无理数:无限不循环小数【详解】解:A,是有理数,故本选项不合题意;B是无理数,故本选项不合题意;C无理数是无限不循环小数,原说法正确,故本选项符合题意;D无限循环小数是有理数,故本选项不合题意故选:C【考点】此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念
8、无理数:无限不循环小数8、C【解析】【分析】先根据二次根式的性质化简括号内的式子,再进行减法运算,最后进行除法运算即可【详解】原式故选C【考点】本题考查了二次根式的混合运算,利用二次根式的性质化简是解题的关键9、A【解析】【分析】根据实数比较大小的方法直接求解即可【详解】解:,四个实数,0,中,最小的实数是,故选:A【考点】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小10、A【解析】【分析】根据无理数、分数的概念判断【详解】解:无限不循环小数是无理数,错误是有理数,错误是有理数,错误也是无理数,不含根号,错误是一个无理数,不是分数,
9、错误故选:【考点】本题考查实数的概念,掌握无理数是无限不循环小数是求解本题的关键二、填空题1、 , 3【解析】【分析】根据求立方根和二次根式的乘方运算法则分别计算即可得到结果【详解】解:;,故答案为:-3;3【考点】此题主要考查了实数的运算,熟练掌握运算法则是解答此题的关键2、4+或6或2【解析】【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)7与C重合的点表示的数:3+(3)6第二次折叠,折叠点表示的数为:(3+7)5或(1+3)1此时与数轴上的点C重合的点表示
10、的数为:5+(56+)4+或1(1)2故答案为:4+或6或2【考点】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键3、【解析】【分析】根据实数的性质即可求解【详解】,m0,m=5,故答案为:5【考点】此题主要考查实数的性质,解题的关键是熟知实数的运算性质4、 5 2【解析】【分析】根据立方根及算术平方根可直接进行求解【详解】解:,125的立方根是5,的算术平方根是2;故答案为5;2【考点】本题主要考查立方根及算术平方根,熟练掌握立方根及算术平方根是解题的关键5、 0 -1【解析】【分析】根据平方根的性质可知一个正数的两个平方根互为相反数,由此即可求出它们的和及商【详解】一个
11、正数有两个平方根,它们互为相反数,一个正数的两个平方根的和是0,商是-1故答案为0,-1【考点】本题考查了平方根的定义注意:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根1或0平方等于它的本身三、解答题1、(1);(2)【解析】【分析】(1)根据新运算中的代数式,将式子进行化简求值即可.(2)分情况进行讨论,当m-2m+3时,当m-2m+3时分别根据新运算的法则进行运算求值即可.【详解】解:(1);(2)m-2m+3不成立,当m-2m+3时,【考点】本题考查新运算,解决本题的关键是正确理解题意,熟练掌握新运算的运算步骤.2、,【解析】【分析】先算分式的加减法,再把除法化为
12、乘法,进行约分化简,最后代入求值,即可求解【详解】解:原式=,当时,原式=【考点】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键3、 (1)(2)(3)点M的坐标为【解析】【分析】(1)根据“横负纵变点”的定义,求出的“横负纵变点”即可;(2)根据材料一里面的化简方法,化简即可;(3)由,可得出,即可化简,得出m的值,再根据“横负纵变点”的定义,求出坐标即可(1),点的“横负纵变点”为;故答案为:(2);(3),【考点】本题考查二次根式的混合运算和完全平方式读懂题意,理解“横负纵变点”的定义和材料一里面的化简方法是解题关键4、6【解析】【分析】根据二次根式的乘方运算、绝对值
13、的性质、零指数幂、负整数指数幂化简,再根据实数的混合运算法则计算即可【详解】解:【考点】本题考查了含二次根式的乘方,绝对值,零指数幂,负整数指数幂的实数混合运算;掌握好相关的基础知识是关键5、 (1);(2)2+;(3)1; ;(5)2;(6)11-4.【解析】【分析】(1)先将二次根式化简为最简二次根式,再进行二次根式加减计算,(2)先将括号里的二次根式进行化简,再进行加减计算,最后再计算二次根式除法,(3)将二次根式的被开方数化为假分数,然后根据二次根式的乘除法法则进行计算,(4)先将二次根式进行化简,再根据二次根式的乘除法法则进行计算,(5)根据平方差公式进行二次根式的计算,(6)根据完全平方公式对二次根式进行计算.【详解】(1) ,=,=,(2) ,=,=,=2+,(3),=,=,=1,(4),=,=,=,(5),= ,=3-1,=2,(6),=,=11.【考点】本题主要考查二次根式的加减乘除运算,解决本题的关键是要熟练掌握二次根式加减乘除计算法则.