1、八年级数学上册第十一章实数和二次根式专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的有()无限小数不一定是无理数;无理数一定是无限小数;带根号的数不一定是无理数;不带根号的数一定是有
2、理数ABCD2、下列各组数中,互为相反数的一组是()A2与B2与C2与D|2|与23、下列各数中,比3大比4小的无理数是()A3.14BCD4、在实数中,最小的是()ABC0D5、如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是()A0B1C2D36、下列二次根式是最简二次根式的是( )ABCD7、计算=()ABCD8、下列等式正确的是()A()2=3B=3C=3D()2=39、把根号外的因式适当变形后移到根号内,得()ABCD10、下列运算正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则x与y关系是_2、计算:_3、若的整数部
3、分是,小数部分是,则_4、计算:=_5、阅读材料:若ab=N,则b=logaN,称b为以a为底N的对数,例如23=8,则log28=log223=3根据材料填空:log39=_三、解答题(5小题,每小题10分,共计50分)1、将下列数按要求分类,并将答案填入相应的括号内:,-0.25,206,0,21%,2.010010001正分数集合负有理数集合无理数集合2、已知3,3ab+1的平方根是4,c是的整数部分,求a+b+2c的平方根3、 “说不完的”探究活动,根据各探究小组的汇报,完成下列问题(1)到底有多大?下面是小欣探索的近似值的过程,请补充完整:我们知道面积是2的正方形边长是,且设,画出如
4、下示意图由面积公式,可得_因为值很小,所以更小,略去,得方程_,解得_(保留到0.001),即_(2)怎样画出?请一起参与小敏探索画过程现有2个边长为1的正方形,排列形式如图(1),请把它们分割后拼接成一个新的正方形要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形小敏同学的做法是:设新正方形的边长为依题意,割补前后图形的面积相等,有,解得把图(1)如图所示进行分割,请在图(2)中用实线画出拼接成的新正方形请参考小敏做法,现有5个边长为1的正方形,排列形式如图(3),请把它们分割后拼接成一个新的正方形要求:画出分割线并在正方形网格图(4)中用实线画出拼
5、接成的新正方形说明:直接画出图形,不要求写分析过程4、对于任意实数m、n,定义关于“”的一种运算如下:mn3m2n例如:2532254,(1)43(1)2411(1)若(3)x2021,求x的值;(2)若y610,求y的最小整数解5、数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则”材料一:把根式进行化简,若能找到两个数m、n,是且,则把变成,开方,从而使得化简例如:化简解:材料二:在直角坐标系xOy中,对于点P(x,y)和Q(x,y)给出如下定义:若,则称Q点为P点的“横负纵变点”例如点(3,2)的“横负纵变点”为(3,2)
6、,点(,5)的“横负纵变点”为(,)请选择合适的材料解决下面的问题:(1)点(,)的“横负纵变点”为_;(2)化简:;(3)已知a为常数(),点M(,m)且,点M是点M的“横负纵变点”,求点M的坐标-参考答案-一、单选题1、A【解析】【分析】根据无理数是无限不循环小数进行判断即可【详解】解:无限小数不一定都是无理数,如是有理数,故正确;无理数一定是无限小数,故正确;带根号的数不一定都是无理数,如是有理数,故正确;不带根号的数不一定是有理数,如是无理数,故错误;故选:A【考点】本题考查的是实数的概念,掌握实数的分类、正确区分有理数和无理数是解题的关键,注意无理数是无限不循环小数2、A【解析】【分
7、析】根据相反数的概念、性质及根式的性质化简即可判定选择项【详解】解:A、2,2与2互为相反数,故选项正确,符合题意;B、2,2与2不互为相反数,故选项错误,不符合题意;C、2与不互为相反数,故选项错误,不符合题意;D、|2|2,2与2不互为相反数,故选项错误,不符合题意故选:A【考点】本题考查了算术平方根,立方根,相反数的概念,解题的关键是掌握相关概念并对数据进行化简3、C【解析】【分析】根据无理数的定义找出无理数,再估算无理数的范围即可求解【详解】解:四个选项中是无理数的只有和,而1742,3212424,34选项中比3大比4小的无理数只有故选:C【考点】此题主要考查了无理数的定义和估算,解
8、题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数4、D【解析】【分析】由正数比负数大可知比小,又因为,所以最小的是【详解】,又故选:D【考点】本题考查了实数的大小比较,实数的比较中也遵循正数大于零,零大于负数的法则比较实数大小的方法较多,常见的有作差法、作商法、倒数法、数轴法、平方法、估算法5、D【解析】【分析】直接利用数轴结合点位置进而得出答案【详解】解:数轴的单位长度为1,如果点表示的数是-1,点表示的数是:3故选D【考点】此题主要考查了实数轴,正确应用数形结合分析是解题关键6、D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详
9、解】A、被开方数含分母,故A不符合题意; B、被开方数,含分母,故B不符合题意; C、被开方数含能开得尽方的因数或因式,故C不符合题意; D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D【考点】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式7、C【解析】【分析】根据二次根式的混合运算和根式的性质即可解题.【详解】解: ,故选C.【考点】本题考查了根式的运算,属于简单题,熟悉根式的性质是解题关键.8、A【解析】【分析】根据二次根式的性质把各个二次根式化简,判断即可【详解】解:()2=3,A正确,符合题
10、意;=3,B错误,不符合题意;=,C错误,不符合题意;(-)2=3,D错误,不符合题意;故选A【考点】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键9、C【解析】【分析】根据已知得出m0,再根据二次根式的性质把被开方数中的分母开出来即可【详解】解:0,0,故选:C【考点】本题考查了二次根式的性质的应用,熟练掌握二次根式的性质是解决本题的关键10、C【解析】【分析】根据二次根式的加法,除法,减法以及二次根式的性质逐个化简计算,从而求解【详解】解:A. 不是同类二次根式,不能进行加法计算,故此选项不符合题意;B. ,故此选项不符合题意;C. ,正确,故此选项符合题意;D. ,
11、故此选项不符合题意故选:C【考点】本题考查二次根式的运算,掌握运算法则正确计算是解题关键二、填空题1、x+y=0【解析】【分析】先移项,然后两边同时进行三次方运算,继而可得答案.【详解】,()3=()3,x=-y,x+y=0,故答案为x+y=0.【考点】本题考查了立方根,明确是解题的关键.2、【解析】【分析】根据立方根和算数平方根的性质计算,即可得到答案【详解】故答案为:【考点】本题考查了立方根和算术平方根的知识;解题的关键是熟练掌握立方根、算术平方根的性质,从而完成求解3、【解析】【分析】先确定出的范围,即可推出a、b的值,把a、b的值代入求出即可【详解】解:,故答案为:【考点】考查了估算无
12、理数的大,解此题的关键是确定的范围89,得出a,b的值4、【解析】【分析】先化简二次根式,再合并即可.【详解】原式=.故答案为:【考点】本题考查二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待5、2【解析】【详解】分析:由于32=9,利用对数的定义计算详解:32=9,log39=log332=2故答案为2点睛:属于定义新运算题目,读懂材料中对数的定义是解题的关键.三、解答题1、见解析【解析】【分析】根据实数的分类,由分数,负有理数,无理数的定义可得答案【详解】解:正分数集合:
13、,21%,;负有理数集合:-0.25,;无理数集合:,2.010010001,【考点】本题考查了有理数以及无理数,利用实数的分类是解题关键2、5【解析】【分析】分别根据算术平方根、平方根的意义,无理数的估算求出a、b、c的值,即可求出a+b+2c的值,根据平方根的意义即可求解【详解】解:3,2a19,解得:a5,3ab+1的平方根是4,15b+116,解得:b0,1011,c10,a+b+2c5+0+21025,a+b+2c的平方根为5【考点】本题考查了算术平方根、平方根的意义,无理数的估算,熟知算术平方根、平方根的意义是解题关键3、 (1),;(2)见解析【解析】【分析】(1)根据图形中大正
14、方形的面积列方程即可;(2)在网格中分别找到11和12的长方形,依次连接顶点即可(1)由面积公式,可得值很小,所以更小,略去,得方程,解得(保留到0.001),即故答案为:,;(2)小敏同学的做法,如图:排列形式如图(3),如图:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形,如图所示【考点】本题考查了估算无理数的大小,考查数形结合的思想,根据正方形的面积求出带根号的边长是解题的关键4、(1)x1015;(2)8【解析】【分析】(1)已知等式利用题中的新定义化简,计算即可求出x的值即可;(2)已知不等式利用题中的新定义化简,求出解集,确定出y的最小整数解即可【详解】解:(1)根据
15、题中的新定义化简(3)x2021,得:92x2021,移项合并得:2x2030,解得:x1015;(2)根据题中的新定义化简y610,得:3y1210,移项合并得:3y22,解得:y的最小整数解是8【考点】本题主要考查了新定义下的实数运算和解一元一次不等式,解题的关键在于能够准确根据题意得到新定义的运算结果.5、 (1)(2)(3)点M的坐标为【解析】【分析】(1)根据“横负纵变点”的定义,求出的“横负纵变点”即可;(2)根据材料一里面的化简方法,化简即可;(3)由,可得出,即可化简,得出m的值,再根据“横负纵变点”的定义,求出坐标即可(1),点的“横负纵变点”为;故答案为:(2);(3),【考点】本题考查二次根式的混合运算和完全平方式读懂题意,理解“横负纵变点”的定义和材料一里面的化简方法是解题关键