1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中考试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列图形为正多边形的是()ABCD2、如图是作的作图痕迹,则此作图的已知条
2、件是()A已知两边及夹角B已知三边C已知两角及夹边D已知两边及一边对角3、正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个平面的是()A正三角形和正方形B正三角形和正六边形C正方形和正六边形D正方形和正八边形4、下列图形中,内角和等于360的是()A三角形B四边形C五边形D六边形5、如图,则A45B55C35D65二、多选题(5小题,每小题4分,共计20分)1、下列命题中是假命题的有()A形状相同的两个三角形是全等形;B在两个三角形中,相等的角是对应角,相等的边是对应边;C全等三角形对应边上的高、中线及对应角平分线分别相等D如果两个三角形都和第三个三角形不全等,那么这两个三
3、角形也一定不全等;2、如图,BE=CF,AB=DE,添加下列哪些条件不能推证ABCDEF( )ABC=EFBC=FCABDEDA=D3、如图,在中,点,分别是边,上的点,且,相交于点,若点是的重心,则以下结论,其中一定正确结论有() 线 封 密 内 号学级年名姓 线 封 密 外 A线段,是的三条角平分线B的面积是面积的一半C图中与面积相等的三角形有5个D的面积是面积的4、下列长度的各种线段,可以组成三角形的是()A2,3,4B1,1,2C5,5,9D7,5,15、关于多边形,下列说法中正确的是()A过七边形一个顶点可以作4条对角线B边数越多,多边形的外角和越大C六边形的内角和等于720D多边形
4、的内角中最多有3个锐角第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在中,AE是的角平分线,D是AE延长线上一点,于点H若,则_2、图中A+B+C+D+E+F+G=_3、若直角三角形的一个锐角为,则另一个锐角等于_4、如图,在和中,以点为顶点作,两边分别交,于点,连接,则的周长为_5、如图,中,三角形的外角和的平分线交于点E,则的度数为_四、解答题(5小题,每小题8分,共计40分)1、在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离请你用学过的数学知识按以下要求设计一测量方案(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示)
5、;(3)计算AB的距离(写出求解或推理过程,结果用字母表示) 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,在中,D是边上的点,垂足分别为E,F,且求证:3、如图,BCAD,垂足为点C,A = 27,BED = 44 求:(1)B的度数;(2)BFD的度数4、如图,在ABC中,A=55,ABD=32,ACB=70,且CE平分ACB,求DEC的度数5、如图,在四边形ABCD中,BCBA,AD=CD,BD平分ABC,求证:A+C=180-参考答案-一、单选题1、D【解析】【分析】根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形可得答案【详解】根据正多边形的定义,得到D中
6、图形是正五边形故选D【考点】本题考查了正多边形,关键是掌握正多边形的定义2、C【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】观察的作图痕迹,可得此作图的条件.【详解】解:观察的作图痕迹,可得此作图的已知条件为:,及线段AB,故已知条件为:两角及夹边,故选C.【考点】本题主要考查三角形作图及三角形全等的相关知识.3、C【解析】【分析】由正多边形的内角拼成一个周角进行判断,ax+by360(a、b表示多边形的一个内角度数,x、y表示多边形的个数)【详解】解:A、正三角形和正方形的内角分别为60、90,360+290360,正三角形和正方形可以镶嵌成一个平面,故A选项不符合题意;B
7、、正三角形和正六边形的内角分别为60、120,260+2120360,或460+1120360,正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;C、正方形和正六边形的内角分别为90、120,290+1120300360且390+1120390360,正方形和正六边形不能镶嵌成一个平面,故C选项符合题意;D、正方形和正八边形的内角分别为90、135,190+2135360,正方形和正八边形可以镶嵌成一个平面,故D选项不符合题意;故选:C【考点】本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角4、B【解析】【分析】根
8、据多边形内角和公式,列式算出它是几边形【详解】解:由多边形内角和公式,解得故选:B【考点】本题考查多边形内角和公式,解题的关键是掌握多边形内角和公式5、B【解析】【分析】求出BE=CF,根据SSS证出AEBDFC,推出C=B,根据全等三角形的判定推出即可【详解】解答:证明:,BE=CF, 线 封 密 内 号学级年名姓 线 封 密 外 在AEB和DFC中,AEBDFC(SSS),C=B=55.【考点】本题考查了全等三角形的性质和判定,解此题的关键是推出AEBDFC,注意:全等三角形的对应边相等,对应角相等二、多选题1、ABD【解析】【分析】利用全等形的定义、对应角及对应边的定义,全等三角形的性质
9、分别判断后即可确定正确的选项【详解】解:A、形状相同的两个三角形不一定是全等形,原命题是假命题,符合题意;B、在两个全等三角形中,相等的角是对应角,相等的边是对应边,原命题是假命题,符合题意;C、全等三角形对应边上的高、中线及对应角平分线分别相等,正确;原命题是真命题;D、如果两个三角形都和第三个三角形不全等,那么这两个三角形也可能全等,原命题是假命题,符合题意故选:ABD【考点】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理2
10、、ABD【解析】【分析】根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得ABCDEF,从而可以解答本题【详解】解:BE=CF,BE+EC=CF+EC,BC=EF,又AB=DE,添加条件BC=EF,根据SS不能判断ABCDEF,故选项A符合题意;添加条件C=F,根据SSA不能判断ABCDEF,故选项B符合题意;添加条件ABDE,可以得到B=DEF,根据(SAS)可判断ABCDEF,故选项C不符合题意;添加条件A=D,根据SSA不能判断ABCDEF,故选项D符合题意;故选:ABD【考点】本题主要考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键
11、,即SSS、SAS、ASA、AAS和HL3、BCD【解析】【分析】根据三角形重心的性质分别判断即可; 线 封 密 内 号学级年名姓 线 封 密 外 【详解】三角形的重心是三角形三条边中线的交点,线段,是的三条中线,不是角平分线,故A错误;三角形的重心是三角形三条边中线的交点,的面积是面积的一半,故B正确;三角形的重心是三角形三条边中线的交点,图中与面积相等的三角形有5个,故C正确;三角形的重心是三角形三条边中线的交点,重心到顶点的距离与重心到对边中点的距离之比是,的面积是面积的,故D正确;故选BCD【考点】本题主要考查了重心的定义理解,准确分析判定是解题的关键4、AC【解析】【分析】根据三角形
12、的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:A、 ,能构成三角形,符合题意;B、1+1=2,不能构成三角形,不符合题意;C、,能构成三角形,符合题意;D、5+17,不能构成三角形,不符合题意故选AC【考点】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键5、ACD【解析】【分析】根据多边形的内角和、外角和,多边形的内角线,即可解答【详解】解:A、过七边形一个顶点可以作4条对角线,选项正确,符合题意;B、多边形的外角和是固定不变的,选项错误,不符合题意;C、六边形的内角和等于720,选项正确,符合题意;D、
13、多边形的内角中最多有3个锐角,选项正确,符合题意;故选:ACD【考点】本题考查了多边形,解决本题的关键是熟记多边形的有关性质三、填空题1、10【解析】【分析】在EFD中,由三角形的外角性质知:HED=AEC=B+BAC,所以B+BAC+EDH=90;联立ABC中,由三角形内角和定理得到的式子,即可推出EDH=(C-B) 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:由三角形的外角性质知:HED=AEC=B+BAC,故B+BAC+EDH=90,ABC中,由三角形内角和定理得:B+BAC+C=180,即:C+B+BAC=90,-,得:EDH=(C-B)=(50-30)=10故答案为:1
14、0【考点】本题考查三角形内角和定理、三角形的外角性质以及角平分线的定义等知识,解题的关键是证明EFD=(C-B)2、540【解析】【分析】根据三角形外角的性质可得,1=C+D,2=E+F,再根据五边形内角和解答即可【详解】解:1=C+D,2=E+F,A+B+C+D+E+F+G=A+B+1+2+G=540故答案为:540【考点】本题考查了三角形外角的性质和五边形内角和利用三角形内角与外角的关系把所求的角的度数归结到五边形中,利用五边形的内角和定理解答3、75【解析】【分析】根据三角形内角和定理计算即可【详解】解:另一个锐角为15,另一个锐角为180-90-15=75,故答案为:75【考点】本题考
15、查了直角三角形的性质,解题的关键是掌握直角三角形两锐角互余4、4【解析】【分析】延长AC至E,使CE=BM,连接DE证明BDMCDE(SAS),得出MD=ED,MDB=EDC,证明MDNEDN(SAS),得出MN=EN=CN+CE,进而得出答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 延长AC至E,使CE=BM,连接DEBD=CD,且BDC=140,DBC=DCB=20,A=40,AB=AC=2,ABC=ACB=70,MBD=ABC+DBC=90,同理可得NCD=90,ECD=NCD=MBD=90,在BDM和CDE中, BDMCDE(SAS),MD=ED,MDB=EDC,MDE=
16、BDC=140,MDN=70,EDN=70=MDN,在MDN和EDN中,MDNEDN(SAS),MN=EN=CN+CE,AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4【考点】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;构造辅助线证明三角形全等是解题的关键5、【解析】【分析】本题先通过三角形内角和求解BAC与BCA的和,继而利用邻补角以及角分线定义求解EAC与ECA的和,最后利用三角形内角和求解此题【详解】,又,三角形的外角和的平分线交于点E,即故填:【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查三角形
17、内角和公式以及角分线和邻补角的定义,难度较低,按照对应考点定义求解即可四、解答题1、(1)见解析;(2)见解析;(3)设DC=m,则AB= m【解析】【分析】本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全等的条件,方案具有可操作性,需要测量的线段在陆地一侧可实施,就可以达到目的【详解】解:(1)见图:(2)在湖岸上选一点O,连接BO并延长到C使BO=OC,连接AO并延长到点D使OD=AO,连接CD,则AB= CD测量DC的长度即为AB的长度;(3)设DC=mBO=CO,AOB=COD,AO=DOAOBCOD(SAS)AB=CD=m【考点】本题考查了全等三角形的应用;解
18、答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系2、见解析【解析】【分析】由得出,由SAS证明,得出对应角相等即可【详解】证明:,在和中,【考点】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观3、(1)63;(2)107【解析】【分析】(1)根据垂直的定义可得,进而根据三角形内角和定理即可求得;(2)根据三角形的外角的性质即可求得【详解】解:(1) BCAD,A = 27, 线 封 密 内 号学级年名姓 线 封 密 外 (2)BED = 44,【考点】本题考查了三角形的内角和定理与三角形的外角性质,掌握以上
19、知识是解题的关键4、DEC =58【解析】【分析】先根据A=55,ACB=70得出ABC的度数,再由ABD=32得出CBD的度数,根据CE平分ACB得出BCE的度数,最后用三角形的外角即可得出结论【详解】在ABC中,A=55,ACB=70,ABC=55,ABD=32,CBD=ABC-ABD=23,CE平分ACB,BCE=ACB=35,在BCE中,DEC=CBD+BCE=58【考点】此题考查了三角形内角和定理和三角形外角的性质,熟练掌握这些性质是解题的关键.5、见解析【解析】【分析】先在线段BC上截取BE=BA,连接DE,根据BD平分ABC,可得ABD=EBD,根据,可判定ABDEBD,根据全等三角形的性质可得:AD=ED,A=BED再根据AD=CD,等量代换可得ED=CD,根据等边对等角可得:DEC=C由BED+DEC=180,可得A+C=180【详解】证明:在线段BC上截取BE=BA,连接DE,如图所示,BD平分ABC,ABD=EBD,在ABD和EBD中,ABDEBD(SAS),AD=ED,A=BEDAD=CD,ED=CD,DEC=CBED+DEC=180,A+C=180 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题主要考查全等三角形的判定和性质,解决本题的关键是要熟练掌握全等三角形的判定和性质.