收藏 分享(赏)

2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx

上传人:a**** 文档编号:638057 上传时间:2025-12-12 格式:DOCX 页数:25 大小:496.01KB
下载 相关 举报
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第1页
第1页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第2页
第2页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第3页
第3页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第4页
第4页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第5页
第5页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第6页
第6页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第7页
第7页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第8页
第8页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第9页
第9页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第10页
第10页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第11页
第11页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第12页
第12页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第13页
第13页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第14页
第14页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第15页
第15页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第16页
第16页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第17页
第17页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第18页
第18页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第19页
第19页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第20页
第20页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第21页
第21页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第22页
第22页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第23页
第23页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第24页
第24页 / 共25页
2022-2023学年基础强化人教版数学八年级上册期中综合复习试题 A卷(解析卷).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中综合复习试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如果三角形的两边长分别为7和2,且它的周长为偶数,那么第三边的长为(

2、)A6B7C5D82、如图,OB平分AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个就能使DOEFOE,你认为要添加的那个条件是()AOD=OEBOE=OFCODE =OEDDODE=OFE3、如图,已知图中的两个三角形全等,则的度数是()A72B60C58D504、如图,B=D=90,BC=CD,1=40,则2=( )A40B50C60D755、如图,在中,D是上一点,于点E,连接,若,则等于()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使ABD

3、ACE,添加一个条件可行的是() 线 封 密 内 号学级年名姓 线 封 密 外 AAD=AEBBD=CECBE=CDDBAD=CAE2、如图,若判断,则需要添加的条件是()A,B,C,D,3、如图,四边形ABCD的对角线AC、BD相交于点O,ABOADO下列结论中正确的结论是()AACBDBCB=CDCABCADCDDA=DC4、如图,已知,下列结论正确的有()ABCD5、下列说法正确的是()A相等的角是对顶角B一个四边形的四个内角中最多可以有三个锐角C两条直线被第三条直线所截,内错角相等D两直线相交形成的四个角相等,则这两条直线互相垂直第卷(非选择题 65分)三、填空题(5小题,每小题5分,

4、共计25分)1、如图,在矩形ABCD中,AB8cm,AD12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动当v为_时,ABP与PCQ全等2、如图,点在的边的延长线上,点在边上,连接交于点,若,则_ 线 封 密 内 号学级年名姓 线 封 密 外 3、已知:如图,是上一点,平分,若,则_(用的代数式表示)4、如图,D,E,F分别是的边,上的中点,连接,交于点G,的面积为6,设的面积为,的面积为,则=_5、如图,四边形ABCD四边形ABCD,则A的

5、大小是_四、解答题(5小题,每小题8分,共计40分)1、如图(1),AB4cm,ACAB,BDAB,ACBD3cm点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动它们运动的时间为t(s)(1)若点Q的运动速度与点P的运动速度相等,当t1时,ACP与BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“ACAB,BDAB”改为“CABDBA60”,其他条件不变设点Q的运动速度为xcm/s,是否存在实数x,使得ACP与BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由2、如图A20,B45,C

6、40,求DFE的度数3、如图,已知线段a、b和,用尺规作一个三角形,使(要求:不写已知、求作、作法、只画图,保留作图痕迹)4、如图,点C、F在线段BE上,ABCDEF90,BCEF,请只添加一个合适的条件使ABCDEF 线 封 密 内 号学级年名姓 线 封 密 外 (1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明5、已知ABC与ADE均为等腰直角三角形,且BACDAE90,点D在直线BC上(1)如图1,当点D在CB延长线上时,求证:BECD;(2)如图2,当D点不在直线BC上时, BE、CD相交于M,直接写出CME的度数;求证:MA平分C

7、ME-参考答案-一、单选题1、B【解析】【分析】设第三边的长为 ,根据三角形的三边关系,可得,再由它的周长为偶数,即可求解【详解】解:设第三边的长为 ,根据题意得: ,即 ,它的周长为偶数,当 时,周长为 ,是偶数故选:B【考点】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键2、D【解析】【分析】根据OB平分AOC得AOB=BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果【详解】解:OB平分AOCAOB=BOC当DOEFOE时,可得以下结论:OD=OF,DE=EF,ODE=OFE,OED=OEFA答案中OD与OE不是DOEFOE的

8、对应边,A不正确; 线 封 密 内 号学级年名姓 线 封 密 外 B答案中OE与OF不是DOEFOE的对应边,B不正确;C答案中,ODE与OED不是DOEFOE的对应角,C不正确;D答案中,若ODE=OFE,在DOE和FOE中, DOEFOE(AAS)D答案正确故选:D【考点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键3、D【解析】【分析】根据是a、c边的夹角,50的角是a、c边的夹角,然后根据两个三角形全等写出即可【详解】解:是a、c边的夹角,50的角是a、c边的夹角,又两个三角形全等,的度数是50故选:D【考点】本题考查了全等三角形的性质,熟练掌握全等三角形的性质

9、是解答本题的关键全等三角形的对应角相等,对应边相等对应边的对角是对应角,对应角的对边是对应边4、B【解析】【分析】根据题意易证,则可由2=ACB=90-1,求得2的值【详解】B=D=90,在RtABC和RtADC中,ABCADC (HL),故选B【考点】本题考查三角形全等的判定和性质判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件5、C【解析】【分析】证明RtBCDRtBED(HL),由全等三角形的性质得出CD=DE,则可得出答案【详解】解:,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,cm,cm故选:C【考点

10、】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键二、多选题1、ABCD【解析】【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可【详解】解:在ABC中,ABAC,BC,当ADAE时,ADEAED,ADEBBAD,AEDCCAE,BADCAE,然后根据SAS或ASA或AAS可判定ABDACE;当BDCE时,根据SAS可判定ABDACE;当BECD时,BEDECDDE,即BDCE,根据SAS可判定ABDACE;当BADCAE时,根据ASA可判定ABDACE综上所述ABCD均可判定ABDACE故选:ABCD【考点】本题考查了全等三角形

11、的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中2、BC【解析】【分析】已知公共角A,根据三角形全等的判定方法对选项依次判定即可;【详解】解:A.判定两个三角形全等时,必须有边的参与,故本选项错误;B. 根据SAS判定ACDABE,故本选项正确;C. 根据AAS判定ACDABE,故本选项正确;D. 不能判定ACDABE,故本选项错误;故选:B、C【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查三角形全等的判定方法,熟练掌握三角形全等的常用判定方法是解答本题的关键.3、ABC【解析】【分析】根据全等三角形的判定以及性质,对选项逐个判定

12、即可【详解】解:,又,A选项正确,符合题意;在和中,C选项正确,符合题意;,B选项正确,符合题意;根据已知条件得不到,D选项错误,不符合题意;故选ABC【考点】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质以及垂直,根据全等三角形的判定与性质逐一分析四条结论的正误是解题的关键4、ACD【解析】【分析】只要证明ABEACF,ANCAMB,利用全等三角形的性质即可一一判断【详解】解:在ABE和ACF中,ABEACF(AAS),BAECAF,BECF,ABAC,BAEBACCAFBAC,即12,故C正确;在ACN和ABM中,ACNABM(ASA),故D正确;CNBMCFBE,EMFN,故A

13、正确,CD与DN的大小无法确定,故B错误故选:ACD【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键5、BD【解析】【分析】根据对顶角的概念、四边形的性质、平行线的性质以及垂直的概念进行判断【详解】解:A.相等的角不一定是对顶角,而对顶角必定相等,故选项说法错误,不符合题意;B. 一个四边形的四个内角中最多可以有三个锐角,若有四个内角为锐角,则内角和小于360,故选项说法正确,符合题意;C.两条平行直线被第三条直线所截,内错角相等,故选项说法错误,不符合题意;D.两直线相交形成的四

14、个角相等,则这四个角都是90,即这两条直线互相垂直,故选项说法正确,符合题意;故选:BD【考点】本题主要考查了对顶角的概念、四边形的性质、平行线的性质以及垂直的概念,解题时注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线一个四边形的四个内角中最多可以有三个锐角,若有四个内角为锐角,则内角和小于360三、填空题1、2或【解析】【详解】可分两种情况:ABPPCQ得到BPCQ,ABPC,ABPQCP得到BACQ,PBPC,然后分别计算出t的值,进而得到v的值【解答】解:当BPCQ,ABPC时,ABPPCQ,AB8cm,PC8cm,BP12

15、84(cm),2t4,解得:t2,CQBP4cm,v24,解得:v2;当BACQ,PBPC时,ABPQCP,PBPC,BPPC6cm,2t6,解得:t3,CQAB8cm,v38,解得:v,综上所述,当v2或时,ABP与PQC全等,故答案为:2或【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到 线 封 密 内 号学级年名姓 线 封 密 外 相等的对应边求出t是解题的关键2、102【解析】【分析】首先根据DFC3B117,可以算出B39,然后设CDx,根据外角与内角的关系可得39xx117,再解方程即可得到x39,再根据三角形内角和定理求出BED的度

16、数【详解】解:DFC3B117,B39,设CDx,39xx117,解得:x39,D39,BED1803939102故答案为:102【考点】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和3、【解析】【分析】过点D分别作DEAB,DFAC,根据角平分线的性质得到DE=DF,根据表示出DE的长度,进而得到DF的长度,然后即可求出的值【详解】如图,过点D分别作DEAB,DFAC,平分,DE=DF,故答案为:【考点】此题考查了角平分线的性质定理,三角形面积的表示方法,解题的关键是根据题意正确作出辅助线4、【解析】【分析】根据同高三角形的面积比就是相应底的比进行推导

17、即可求得答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:是的中点,、分别是、的中点,设的面积为,的面积为故答案是:【考点】本题考查了与三角形中线有关的三角形面积问题,涉及到了三角形中线的性质、三角形的面积公式、同高三角形面积之比等于相应底的比等,难度不大5、95【解析】【分析】根据两个多边形全等,则对应角相等四边形以及内角和即可完成【详解】四边形ABCD四边形ABCDD=D=130四边形ABCD的内角和为360A=360-B-C-D=95故答案为:95【考点】本题考查了多边形全等的性质、多边形的内角和定理,掌握多边形全等的性质是关键四、解答题1、(1)全等,理由见详解;PCPQ

18、,理由见解析;(2)存在,或【解析】【分析】(1)利用SAS证得ACPBPQ,得出ACP=BPQ,进一步得出APC+BPQ=APC+ACP=90得出结论即可;(2)由ACPBPQ,分两种情况:AC=BP,AP=BQ,AC=BQ,AP=BP,建立方程组求得答案即可【详解】解:(1)当时,又,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,即线段与线段垂直(2)若,则,则,解得:;若,则,则,解得:;综上所述,存在或使得与全等【考点】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等在解题时注意分类讨论思想的运用2、105【解析】【分析】先根据三角形的外角性质

19、求出ADB,再根据三角形的外角性质计算即可【详解】解:ADBB+C,B45,C40,ADB40+4585,DFEA+ADB,A20,DFE85+20105【考点】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键3、见解析【解析】【分析】先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,即可【详解】解:先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,连接,即为所求,如图所示:【考点】本题考查了复杂作图,利用了作一个角等于已知角,作线段等于已知线段,是基本作图,需熟练掌握解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形

20、的基本性质把复杂作图拆解成基本作图,逐步操作 线 封 密 内 号学级年名姓 线 封 密 外 4、(1)ACBDFE,ACDF;(2)选择添加条件ACDE,证明见解析【解析】【分析】(1)根据题意添加条件即可;(2)选择添加条件ACDE,根据“HL”证明即可【详解】(1)根据“ASA”,需添加的条件是ACBDFE,根据“HL”,需添加的条件是ACDF,故答案为:ACBDFE,ACDF;(2)选择添加条件ACDE证明,证明:ABCDEF90,在RtABC和RtDEF中,RtABCRtDEF(HL)【考点】本题考查了全等三角形的判定,熟知全等三角形的判定定理是解题关键,证明三角形全等时注意条件的对应

21、5、 (1)见解析(2)90;见解析【解析】【分析】(1)先推出CAD=BAE,C=ABC=45,然后证明CADBAE得到ABE=C=45,则EBC=ABE+ABC=90,即EBCD;(2)同理可证BAECAD,得到ABE=ACD,再由EMC=EBC+BCD,得到EMC=ABE+ABC+ACD+BCD=90;如图,过点A作AGBE于G,AFCD于F,由BAECAD,得到AG=AF,证明RtAGMRtAFM得到AMG=AMF,即AM平分EMC(1)解:ABC与ADE均为等腰直角三角形,且BACDAE90,AB=AC,AE=AD,DAE+DAB=CAB+DAB,CAD=BAE,C=ABC=45,CADBAE(SAS),ABE=C=45,EBC=ABE+ABC=90,即EBCD;(2)解:同理可证BAECAD,ABC=ACB=90,ABE=ACD,EMC=EBC+BCD,EMC=ABE+ABC+ACD+BCD=90;如图,过点A作AGBE于G,AFCD于F,BAECAD,AG=AF,在RtAGM和RtAFM中,RtAGMRtAFM(HL),AMG=AMF,即AM平分EMC 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题主要考查了全等三角形的性质与判定,三角形外角的性质,熟知全等三角形的性质与判定条件是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1