1、人教版七年级数学上册第二章整式的加减同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、设x,y,c是实数,正确的是()A若xy,则xcycB若xy,则xcycC若xy,则D若,则2x3y2、在中,是
2、代数式的有()A5个B4个C3个D2个3、在0,1,x,3x,中,是单项式的有()A1个B2个C3个D4个4、小文在做多项式减法运算时,将减去误认为是加上,求得的答案是(其他运算无误),那么正确的结果是()ABCD5、下列去括号错误的个数共有();A0个B1个C2个D3个6、式子,0,a,中,下列结论正确的是()A有4个单项式,2个多项式B有3个单项式,3个多项式C有5个整式D以上答案均不对7、下列运算中,正确的是()A3x+4y12xyBx9x3x3C(x2)3x6D(xy)2x2y28、下列计算的结果中正确的是()A6a22a24Ba+2b3abC2xy32y3x0D3y2+2y25y49
3、、关于多项式,下列说法正确的是()A次数是3B常数项是1C次数是5D三次项是10、有一题目:点、分别表示数-1、1、5,三点在数轴上同时开始运动,点运动方向是向左,运动速度是;点、的运动方向是向右,运动速度分别、,如图,在运动过程中,甲、乙两位同学提出不同的看法,甲:的值不变;乙:的值不变;下列选项中,正确的是()A甲、乙均正确B甲正确、乙错误C甲错误、乙正确D甲、乙均错误第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、按如图所示的程序计算,若开始输入的x的值为48,我们发现第一次得到的结果为24,第二次得到的结果为12,请你探索第2021次得到的结果为_2、如图,点,
4、在数轴上,点为原点,在数轴上截取,点表示的数是,则点表示的数是_(用含字母的代数式表示)3、已知2m3n=4,则代数式m(n4)n(m6)的值为_4、如果a,b互为倒数,c,d互为相反数,且,则代数式=_5、若单项式与单项式是同类项,则_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:(1)若,求的值;(2)若的平方比它本身还要大3,求的值2、观察下面依次排列的各数,按照规律写出后面的数及其他要求的数,, ,,_,_,第2019个数是_3、下列图形是用五角星摆成的,如果按照此规律继续摆下去:(1)第4个图形需要用 个五角星;第5个图形需要用 个五角星;(2)第n个图形需要用
5、个五角星;(3)用6064个五角星摆出的图案应该是第 个图形;(4)现有1059个五角星,能否摆成符合以上规律的图形(1059个五角星要求全部用上),请说明理由4、如图图案是用长度相同的火柴棒按一定规律拼搭而成,图案需8根火柴棒,图案需15根火柴棒,图案需15根火柴棒,(1)按此规律,图案需_根火柴棒;(2)用含n的代数式表示第n个图案需根火柴棒根数5、观察下列单项式:,写出第个单项式,为了解这个问题,特提供下面的解题思路这组单项式的系数的符号,绝对值规律是什么?这组单项式的次数的规律是什么?根据上面的归纳,你可以猜想出第个单项式是什么?请你根据猜想,请写出第个,第个单项式-参考答案-一、单选
6、题1、B【解析】【分析】根据等式的性质逐项分析即可【详解】解:A、若,则,故该选项不正确,不符合题意;B、若,则,故该选项正确,符合题意;C、若,且,则,故该选项不正确,不符合题意;D、若,则,故该选项不正确,不符合题意;故选:B【考点】本题考查了等式的性质,熟练掌握等式的性质是解题的关键等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等2、A【解析】【分析】代数式是由数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、等符号【详解】,含有“=”和“”,所以
7、不是代数式,则是代数式的有其5个,故选:A【考点】考查了代数式的定义,掌握代数式的定义是本题的关键,注意含有=、等符号的不是代数式3、D【解析】【分析】利用数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,进而判断得出即可【详解】根据单项式的定义可知,只有代数式0,-1,-x, a,是单项式,一共有4个.故答案选D.【考点】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式.4、D【解析】【分析】根据加减互逆运算关系得出这个多项式为:,去括号,合并同类项可得该多项式为:,再根据题意列出进一步求解即可【详解】根据题意,这个多项式为:, ,则正确的
8、结果为:, , ,故选:D【考点】本题主要考查多项式的运算,解题关键是掌握整式的加减运算顺序和运算法则及加减互逆的运算关系5、D【解析】【分析】根据整式加减的计算法则进行逐一求解判断即可【详解】解: ,故此项错误;,故此项正确;,故此项错误;,故此项错误;故选D【考点】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关知识进行求解6、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和是多项式【详解】解:是两个单项式的和,是多项式;是单项式;是3个单项式的和,是多项式:0,a是单项式;是单项式;不是整式,综上所述,单项式共有4个,多项式共有2个,
9、整式共有6个,故选:A【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键7、C【解析】【分析】直接应用整式的运算法则进行计算得到结果【详解】解:A、原式不能合并,错误;B、原式,错误;C、原式,正确;D、原式,错误,故选:C【考点】整式的乘除运算是进行整式的运算的基础,需要完全掌握.8、C【解析】【分析】直接利用合并同类项法则计算得出答案【详解】A、6a22a24a2,故此选项错误;B、a+2b,无法计算,故此选项错误;C、2xy32y3x0,故此选项正确;D、3y2+2y25y2,故此选项错误故选:C【考点】本题考查了整式的运算问题,掌握合并同类项法则是解题的关键9、A
10、【解析】【分析】根据多项式的项、次数等相关概念并结合多项式进行分析,再分别判断即可【详解】解:多项式2x2y3xy1,次数是3,常数项是1,三次项是2x2y,所以四个选项中只有A正确;故答案为:A【考点】本题考查了多项式的项的系数和次数定义的掌握情况解题的关键是弄清多项式次数、常数项的定义10、B【解析】【分析】设运动时间为xs,则P表示的数是为-1-2x,Q表示的数为1+x,点M表示的数为5+3x,根据数轴上两点间的距离公式计算整理即可判断【详解】点、分别表示数-1、1、5,三点在数轴上同时开始运动,点运动方向是向左,运动速度是;点、的运动方向是向右,运动速度分别、,设运动时间为xs,则P表
11、示的数是为-1-2x,Q表示的数为1+x,点M表示的数为5+3x,3PM-5PQ=3(5+3x+1+2x)-5(1+x+1+2x)=8,保持不变;甲的说法正确;3QM-3PQ=3(5+3x-1-x)-3(1+x+1+2x)=6-3x,与x有关,会变化;乙的说法不正确;故选B【考点】本题考查了数轴上的两点间的距离,数轴上点与数的关系,准确表示数轴上两个动点之间的距离是解题的关键二、填空题1、8【解析】【分析】按照程序将每次得到的结果重复输入,寻找结果之间的规律,从而找出2021次时的结果【详解】按照程序,每次得到结果如下:第1次:24第2次:12第3次:6第4次:3第5次:8第6次:4第7次:2
12、第8次:1第9次:6第10次:3第11次:8根据以上结果以可发现,从第3次开始,结果按6、3、8、4、2、1每6个结果为一个周期进行循环,3,到2021次时,结果为循环中第3个数,结果为8,故答案为:8【考点】本题考查了数字类规律探索,根据数据找出规律是解题的关键2、【解析】【分析】首先确定点B表示的数,再确定AB的长,进而可得BC的长,然后可得点C表示的数【详解】解:,点A表示的数是m,点B表示的数为,点C表示的数是,故答案为:【考点】此题主要考查了列代数式以及数轴上两点间的距离、点的表示,理解题意,综合运用这些知识点是解题关键3、8【解析】【详解】解:2m3n=4,原式=mn4mmn+6n
13、=4m+6n=2(2m3n)=2(4)=8,故答案为:84、1【解析】【分析】利用倒数,相反数及绝对值的定义求出ab,c+d,以及m的值,代入原式计算即可得到结果【详解】解:由题意得:ab=1,c+d=0,m= -1,=2-0-1=1故答案为1【考点】此题考查了有理数的混合运算,代数式求值,相反数,熟练掌握各自的性质是解本题的关键5、4【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的单项式是同类项.可列式子m-1=2,n+1=2,分别求出m,n的值,再代入求解即可.【详解】解:单项式与单项式是同类项,m-1=2,n+1=2,解得:m=3,n=1.m+n=3+1=4.故答案
14、为:4.【考点】本题考查了同类项的概念,正确理解同类项的定义是解题的关键.三、解答题1、 (1)为-3或5;(2)9【解析】【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)先求出,再整体代入即可(1)解:原式=若,则当,原式当,原式故A为-3或5(2)解:的平方比它本身还要大3,原式故A为9【考点】此题考查了整式的加减-化简求值,熟练掌握运算法则和整体代入思想是解本题的关键2、, ,【解析】【分析】分子是1,分母是从1开始连续的自然数,符号为+-“,四个数一组,由此得出第9个数为,第10个数为,20194=5043所以第2019个数的符号为“-”,进一步求得答案即可
15、【详解】由已知得分子是1,分母是从1开始连续的自然数,符号为“+”,第9个数为,第10个数为,20194=5043,第2019个数为负数,第2019个数为,故答案为, ,.【考点】此题考查规律型:数字的变化类,解题关键在于找到其规律.3、(1)13,16;(2)(3n+1);(3)2021;(4)不能,见解析【解析】【分析】(1)不难看出后一个图形比前一个图形多3个五角星,据此进行求解即可;(2)结合(1)进行分析即可得出结果;(3)(4)利用(2)中的结论进行求解即可【详解】解:(1)由题意得:第1个图形需要用五角星的个数为:4,第2个图形需要用五角星的个数为:7=4+3=4+31,第3个图
16、形需要用五角星的个数为:10=4+3+3=4+32,第4个图形需要用五角星的个数为:13=4+3+3+3=4+33,第5个图形需要用五角星的个数为:16=4+3+3+3+3=4+34,故答案为:13,16;(2)由(1)得:第n个图形需要用五角星的个数为:4+3(n-1)=3n+1,故答案为:(3n+1);(3)由题意得:3n+1=6064,解得:n=2021,故答案为:2021;(4)不能,理由如下:由题意得:3n+1=1059,解得:n=,不是整数,1059个五角星不能摆成符合以上规律的图形【考点】本题主要考查了图形的变化规律,解答的关键是由所求的图形总结出所存在的规律4、 (1)50(2
17、)7n+1【解析】【分析】(1)根据图案、中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,可得出图案需火柴棒:8+76=50根;(2)根据(1)的规律,可知第n个图案需火柴棒8+7(n-1)=7n+1根(1)解:图案需火柴棒:8根;图案需火柴棒:8+7=15根;图案需火柴棒:8+7+7=22根;图案需火柴棒:8+76=50根; 故答案为:50;(2)解:由(1)中规律:图案n需火柴棒:8+7(n-1)=7n+1根;故答案为:7n+1;【考点】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化5、
18、 (或:负号正号依次出现;),(或:从开始的连续奇数);从开始的连续自然数;第个单项式是:;个单项式是;第个单项式是【解析】【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】数字为,为奇数且奇次项为负数,可得规律:;故单项式的系数的符号是:(或:负号正号依次出现;),绝对值规律是:(或:从开始的连续奇数);字母因数为:,可得规律:,这组单项式的次数的规律是从开始的连续自然数第个单项式是:把、直接代入解析式即可得到:第个单项式是;第个单项式是【考点】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.