1、人教版七年级数学上册第二章整式的加减专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于有理数,定义,则() () 化简后得()ABCD2、已知与是同类项,则的值是()A2B3C4D53、某商品打
2、七折后价格为a元,则原价为()Aa元Ba元C30%a元Da元4、观察下列等式:717,7249,73343,742401,7516807,76117649,根据其中的规律可得71+72+72020的结果的个位数字是()A0B1C7D85、下列各式:mn,m,8,x2+2x+6,y35y+中,整式有()A3个B4个C6个D7个6、语句“比的小的数”可以表示成()ABCD7、已知2a+3b4,则整式4a6b+1的值是()A5B3C7D108、如果一个多项式的各项的次数都相同,那么这个多项式叫做齐次多项式如:x3+3xy2+4xz2+2y3 是 3 次齐次多项式,若 ax+3b26ab3c2 是齐次
3、多项式,则 x 的值为()A-1B0C1D29、已知与的和是单项式,则等于()AB10C12D1510、下面说法中一定是负数;是二次单项式;倒数等于它本身的数是1;若,则;由变形为,正确的个数是( )A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某市出租车收费标准为:起步价为8元,3千米后每千米的价格为2.5元,在计价器最终所显示数字的基础上再加元燃油附加费,小赵乘坐出租车走了千米,则小赵应该共付车费_元(用含和的代数式表示)2、观察下列一系列数:按照这种规律排下去,那么第8行从左边数第14个数是_3、已知,则的值为_4、如图,用大小相同的小正
4、方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,按这样的方法拼成的第个正方形比第n个正方形多_个小正方形5、若7axb2与a3by的和为单项式,则yx_三、解答题(5小题,每小题10分,共计50分)1、计算:3(x22xy)(x26xy)4y2、某商场将进货价为 30 元的台灯以 40 元的销售价售出,平均每月能售出 600 个经市场调研发现,销售价每上涨 1 元,其销售量就将减少10个设每个台灯的销售价上涨a元(1)用含a 的代数式填空:涨价后,每个台灯的销售价为_元;涨价后,商场的台灯平均每月的销售量为_个;(2)如果商场要想销售利润平均每月达到 10000
5、 元,商场经理甲说“在原售价每台 40 元的基础上再上涨40元,可以完成任务”;商场经理乙说“不用涨那么多,在原售价每台 40 元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由3、已知关于x,y的多项式x4(m2)xnyxy23(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?4、将下列代数式按尽可能多的方法分类(至少写三种):5、为给同学们创造更好的读书条件,学校准备新建一个长度为的读书长廊,并准备用若干块带有花纹和没有花纹的两种大小相同的正方形地面砖搭配在一起,按如图所示的规律拼成图案铺满长廊,已知每块正方形地面砖的边长均为(1)按
6、图示规律,第一个图案的长度_;第二个图案的长度_(2)请用式子表示长廊的长度,与带有花纹的地面砖块数之间的关系(3)当长廊的长度为时,请计算出所需带有花纹的地面砖的块数-参考答案-一、单选题1、C【解析】【分析】根据新定义的计算规则先计算括号内,按法则转化为整式加减计算,去括号合并,再根据新定义转化为整式的加减计算去括号,最后合并同类项即可【详解】解:,(x+y)(x-y)3x=2(x+y)-(x-y)3x=(2x+2y-x+y)3x=(x+3y)3x=2(x+3y)-3x=2x+6y-3x=-x+6y故选C【考点】本题考查新定义运算法则,掌握新定义运算法则实质,化为整式加减的常规计算,去括号
7、,合并同类项是解题关键2、B【解析】【分析】根据同类项的概念可得关于n的一元一次方程,求解方程即可得到n的值.【详解】解:与是同类项,n+1=4,解得,n=3,故选:B.【考点】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同3、B【解析】【分析】直接利用打折的意义表示出价格即可得出答案【详解】设该商品原价为x元,某商品打七折后价格为a元,原价为:0.7x=a,则x=a(元),故选B【考点】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.4、A【解析】【分析】根据题意可知个位数字按照7、9、3、
8、1每四个一循环,每四个数字的个位数所得和为20,进而问题可求解【详解】解:由717,7249,73343,742401,7516807,76117649,可知个位数字按照7、9、3、1每四个一循环,每四个数字的个位数所得和为7+9+3+1=20,即和的个位数为0,20204=505,71+72+72020的结果的个位数字是0;故选A【考点】本题主要考查数字规律,解题的关键是得到个位数的循环及和5、C【解析】【分析】根据整式的定义,结合题意即可得出答案【详解】解:在mn,m,8,x2+2x+6,y35y+中,整式有mn,m,8, x2+2x+6,一共6个故选:C【考点】本题主要考查了整式的定义,
9、注意分式与整式的区别在于分母中是否含有未知数整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母单项式和多项式统称为整式6、A【解析】【分析】根据题目中的数量关系解答即可【详解】解:的是,“比的小的数”可以表示成故选A【考点】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式解答本题的关键是仔细读题,找出题目所给的数量关系7、C【解析】【分析】整式可变形为,然后把代入变形后的算式,求出算式的值是多少即可【详解】解:,故选:【考点】此题主要考查了代数式求值的方法,要熟练掌握,解答此题的关键是要明确:求代数式的
10、值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值题型简单总结以下三种:已知条件不化简,所给代数式化简;已知条件化简,所给代数式不化简;已知条件和所给代数式都要化简8、C【解析】【分析】根据齐次多项式的定义一个多项式的各项的次数都相同,得出关于m的方程,解方程即可求出x的值.【详解】由题意,得,解得.所以C选项是正确的.【考点】本题考查了学生的阅读能力与知识的迁移能力.正确理解齐次多项式与单项式的次数的定义是解题的关键.9、B【解析】【分析】由同类项的含义可得:,再求解,再代入代数式求值即可得到答案.【详解】解:因为与的和是单项式,所以它们是同类项,所以,解得所以故选:【考点】本题考
11、查的是同类项的含义,一元一次方程组的解法,代数式的值,掌握同类项的概念是解题的关键.10、C【解析】【分析】-a不一定是负数,例如a=0时;0.5ab中字母为a与b,指数和为2,故是二次单项式,本选项正确;倒数等于它本身的数是1,本选项正确;若|a|=-a,a为非正数,本选项错误;由-2(x-4)=2两边除以-2得到x-4=-1,本选项正确【详解】-a不一定是负数,例如a=0时,-a=0,不是负数,本选项错误;0.5ab是二次单项式,本选项正确;倒数等于它本身的数是1,本选项正确;若|a|=-a,则a0,本选项错误;由-2(x-4)=2两边除以-2得:x-4=-1,本选项正确,则其中正确的选项
12、有3个故选C【考点】此题考查了等式的性质,相反数,绝对值,倒数,以及单项式,熟练掌握各自的定义是解本题的关键二、填空题1、【解析】【分析】费用为起步价+行驶路程费用+燃油附加费计算即可【详解】根据题意,得总费用为:8+(x-3)=,故答案为:【考点】本题考查了代数式的列法,熟练掌握列代数式的方法是解题的关键2、【解析】【分析】根据图中的数字,可以发现数字的变化特点,从而可以求得第8行从左边数第14个数,本题得以解决【详解】解:由图可得,第一行有1个数,第二行有3个数,第三行有5个数,则第8行有15个数,前七行一共有:个数字,则第8行从左边数第14个数的绝对值是,图中的奇数都是负数,偶数都是正数
13、,第8行从左边数第14个数是,故答案为:【考点】本题考查数字的变化类,解题的关键是明确题意,发现数字的变化特点,求出相应的数字3、1【解析】【分析】把直接代入即可解答【详解】解:,故答案为1【考点】本题主要考查了代数式求值,利用整体思想是解题关键4、2n+3【解析】【分析】首先根据图形中小正方形的个数规律得出变化规律,进而得出答案【详解】解:第一个图形有22=4个正方形组成,第二个图形有32=9个正方形组成,第三个图形有42=16个正方形组成,第n个图形有(n+1)2个正方形组成,第n+1个图形有(n+2)2个正方形组成(n+2)2-(n+1)2=2n+3故答案为:2n+3【考点】此题主要考查
14、了图形的变化类,根据图形得出小正方形的变化规律是解题关键5、8【解析】【分析】直接利用合并同类项法则进而得出x,y的值,即可得出答案【详解】解:因为7axb2与a3by的和为单项式,所以7axb2与a3by是同类项,所以x3,y2,所以yx238,因此本题答案为8【考点】此题主要考查了单项式,正确得出x,y的值是解题关键三、解答题1、【解析】【分析】根据整式的加减运算,对式子进行求解即可【详解】解:【考点】此题考查了整式的加减运算,解题的关键是掌握整式加减运算法则2、 (1)(40+a),(600-10a)(2)经理甲与乙的说法均正确,理由见解析【解析】【分析】(1)根据进价和售价以及每上涨1
15、元时,其销售量就将减少10个之间的关系,列出代数式即可;(2)根据平均每月能售出600个和销售价每上涨1元时,其销售量就将减少10个之间的关系列出式子,再分两种情况讨论,求出每月的销售利润,再进行比较即可(1)解:涨价后,每个台灯的销售价为40+a(元);涨价后,商场的台灯平均每月的销售量为(600-10a)台;故答案为:(40+a),(600-10a);(2)解:甲与乙的说法均正确,理由如下:涨价后,每个台灯的利润为40+a-30=10+a(元),依题意可得该商场台灯的月销售利润为:(600-10a)(10+a);当a=40时,(600-10a)(10+a)=(600-1040)(10+40
16、)=10000(元);当a=10时,(600-10a)(10+a)=(600-1010)(10+10)=10000(元);故经理甲与乙的说法均正确【考点】此题考查了列代数式,代数式的求值,解决问题的关键是读懂题意,找到所求的量的关系,列出代数式,求出代数式的值3、(1)n4,m2;(2)m2,n为任意实数【解析】【分析】(1)根据多项式是五次四项式可知n15,m20,从而可求得m、n的取值;(2)根据多项式是四次三项式可知:m20,n为任意实数【详解】解:(1)多项式是五次四项式,n15,m20,n4,m2;(2)多项式是四次三项式,m20,n为任意实数,m2,n为任意实数【考点】本题主要考查
17、的是多项式的定义,掌握多项式的定义是解题的关键4、见详解【解析】【分析】根据整式和分式分类,单项式,多项式,分式分类,单项式二项式,四项式,分式分类,即可【详解】解:整式:分式:;单项式:多项式:分式:;单项式:二项式:四项式:分式:【考点】本题主要考查整式,单项式,多项式的概念,熟练掌握整式,单项式、多项式的定义是解题的关键5、 (1)1.8,3;(2)Ln(2n+1)0.6;(3)50【解析】【分析】(1)观察题目中的已知图形,可得前两个图案中有花纹的地面砖分别有:1,2个,第二个图案比第一个图案多1个有花纹的地面砖,所以可得第n个图案有花纹的地面砖有n块;第一个图案边长30.6L1,第二
18、个图案边长50.6L2;(2)由(1)得出第n个图案边长为L(2n+1)0.6;(3)根据(2)中的代数式,把L为60.6m代入求出n的值即可(1)解:第一图案的长度L10.631.8,第二个图案的长度L20.653;故答案为:1.8,3;(2)解:观察图形可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,第3个图案中有花纹的地面砖有3块,第4个图案中有花纹的地面砖有4块,则第n个图案中有花纹的地面砖有n块;第一个图案边长L30.6,第二个图案边长L50.6,第三个图案边长L70.6,第四个图案边长L90.6,则第n个图案边长为Ln(2n+1)0.6;(3)解:把L36.6代入L(2n+1)0.6中得:60.6(2n+1)0.6,解得:n50,答:需带有花纹图案的瓷砖的块数是50【考点】此题考查了平面图形的有规律变化,以及一元一次方程的应用,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题