1、七年级数学上册第一章丰富的图形世界章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、观察下列图形,其中不是正方体的表面展开图的是()ABCD2、将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不
2、能得到的平面图形是()ABCD3、不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有6条棱,则该模型对应的立体图形可能是()A四棱柱B三棱柱C四棱锥D三棱锥4、如图所示的是一个由5块大小相同的小正方体搭建成的几何体,则它的左视图是()ABCD5、下列几何体中,是圆锥的是()ABCD6、下列几何体中,圆柱体是()ABCD7、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A代表B代表C代表D代表8、如图,该立体图形的左视图是()ABCD9、一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A中B考C
3、顺D利10、2022年北京冬奥会的奖牌“同心”表达了“天地合人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A合B同C心D人第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是一个长、宽、高分别为、()长方体纸盒,将此长方体纸盒沿不同的棱剪开,展成的一个平面图形是各不相同的则在这些不同的平面图形中,周长最大的值是_(用含、的代数式表示)2、用小立方块搭一个几何体,如图是从正面和上面看到的几何体的形状图,最少需要 _个小立方块,最多需要 _个小立方块 3、如图是一个几何体的三视图
4、,根据图中所示数据求得这个几何体的侧面积是_(结果保留)4、时钟秒针旋转时,形成一个圆面,这说明了_;三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了_5、如图,在正方体中,与线段AB平行的线段有_条三、解答题(5小题,每小题10分,共计50分)1、李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子(1)共有 种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把-6,8,10,-10,-8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0(直接在图中
5、填上)2、如图所示,图1为一个棱长为8的正方体,图2为图1的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则_,_(2)如果面“10”是左面,面“6”在前面,则上面是_(填“x”或“y”或“2”)(3)图1中,点M为所在棱的中点,在图2中找点M的位置,直接写出图2中ABM的面积3、下列是我们常见的几何体,按要求将其分类(只填写编号)(1)如果按“柱”“锥球”来分,柱体有_,椎体有_,球有_;(2)如果按“有无曲面”来分,有曲面的有_,无曲面的有_4、设棱锥的顶点数为 ,面数为,棱数为(1)观察与发现:如图,三棱锥中, ,
6、 , ;五棱锥中, , , (2)猜想:十棱锥中, , , ; 棱锥中, , , (用含有 的式子表示)(3)探究:棱锥的顶点数()与面数()之间的等量关系: ;棱锥的顶点数()、面数()、棱数()之间的等量关系: (4)拓展:棱柱的顶点数()、面数()、棱数()之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由5、如图是长方体的展开图,若图中的正方形边长为6cm,长方形的长为8cm,宽为6cm,请求出由展开图折叠而成的长方体的表面积和体积-参考答案-一、单选题1、B【解析】【分析】利用正方体及其表面展开图的特点解题【详解】解:A、C、D均是正方体表面展开图;B、是凹字
7、格,故不是正方体表面展开图故选:B【考点】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可2、C【解析】【详解】由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C故选:C3、D【解析】【分析】根据三棱锥的特点,可得答案【详解】侧面是三角形,说明它是棱锥,若是棱柱,则侧面应该是长方形,底面是三角形,说明它是三棱锥,且满足有6条棱的特点
8、,故选:D【考点】本题考查了认识立体图形,熟记常见几何体的特征是解题关键4、D【解析】【分析】找到从几何体的左边看所得到的图形即可【详解】解:左视图有2列,每列小正方形数目分别为2,1故选:D【考点】此题主要考查了简单几何体的三视图,关键是掌握所看的位置5、A【解析】【分析】以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体为圆锥,圆锥的底面是圆,侧面是曲面【详解】解:A.是圆锥,符合题意;B.是四棱锥,不符合题意;C.是三棱柱,不符合题意;D.是圆柱,不符合题意;故选A【考点】本题考查了立体图形的识别,注意几何体的分类,一般分为柱体、锥体和球,柱体又分为圆柱和棱柱,
9、椎体又分为圆锥和棱锥6、C【解析】【分析】根据圆柱体的定义,逐一判断选项,即可【详解】解:A. 是圆锥,不符合题意;B. 是圆台,不符合题意;C. 是圆柱,符合题意;D. 是棱台,不符合题意,故选C【考点】本题主要考查几何体的认识,掌握圆锥、圆柱、圆台、棱台的定义,是解题的关键7、A【解析】【分析】根据正方体展开图的对面,逐项判断即可【详解】解:由正方体展开图可知,的对面点数是1;的对面点数是2;的对面点数是4;骰子相对两面的点数之和为7,代表,故选:A【考点】本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对8、D【解析】【分析】根据从左边看得到的图形
10、是左视图,可得答案【详解】解:该立体图形的左视图为D选项故选:D【考点】本题考查了简单组合体的三视图,从左边看得到的图形是左视图9、C【解析】【详解】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面故选C考点:正方体展开图.10、D【解析】【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D【考点】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键二、填空题1、【解析】【分析】只需要将最长的棱都剪开,最
11、短的棱只剪一条即可得到周长最大的展开图形【详解】如图,此平面图形就是长方形展开时周长最大的图形,的最大周长为,故答案为【考点】此题主要考查了长方体的展开图的性质,根据展开图的性质得出最大周长的图形是解题关键2、 【解析】【分析】易得这个几何体共有3层,从上面看可得第一层正方体的个数,由正面看可得第二层和第三层最少或最多的正方体的个数,相加即可【详解】解:搭这样的几何体最少需要21个小正方体,最多需要3个小正方体;故答案为:,【考点】此题主要考查了学生对不同方向观察图形的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“从上面看打地基,从正面看疯狂盖,从左面看拆违章”就更
12、容易得到答案3、24 cm【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体,底面半径是42=2cm,高是6cm,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:22=4(cm),这个圆柱的侧面积是46=24(cm)故答案为:24 cm【考点】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体4、 线动成面 面动成体【解析】【详解】分析:熟悉点、线、面、体之间的联系,根据运动的观点即可解详解:根据分析即知:点动成线;线动成面;面动成体故答案为点动成线;
13、线动成面;面动成体点睛:本题考查了点、线、面、体之间的联系,点是构成图形的最基本元素5、3【解析】【分析】与线段AB平行的线段的种类为:直接与AB平行,与平行于AB的线段平行【详解】解:与AB平行的线段是:DC、EF;与CD平行的线段是:HG,所以与AB线段平行的线段有:EF、HG、DC故答案是:EF、HG、DC【考点】本题考查了平行线平行线的定义:在同一平面内,不相交的两条直线叫平行线三、解答题1、(1)4;(2)见解析;(3)见解析【解析】【分析】(1)根据正方体展开图特点:中间4联方,上下各一个,中间3联方,上下各1,2,两个靠一起,不能出“田”字,符合第一种情况,中间四个连在一起,上面
14、一个,下面有四个位置,所以有四种弥补方法;(2)利用(1)的分析画出图形即可;(3)想象出折叠后的立方体,把数字填上即可,注意答案不唯一【详解】解:(1)根据正方体展开图特点:中间4联方,上下各一个,中间3联方,上下各1,2,两个靠一起,不能出“田”字,符合第一种情况,中间四个连在一起,上面一个,下面有四个位置,所以共有4种弥补方法,故答案为:4;(2)如图所示:;(3)如图所示:【考点】此题主要考查了立体图形的展开图,识记正方体展开图的基本特征是解决问题的关键2、(1)12;8(2)2;(3)16或80【解析】【分析】(1)正方体展开图中,相对的两个面之间必然隔着一个正方形,由此知道“2”与
15、“x”是相对面,“4”与“10”是相对面,“6”与“y”是相对面,由相对面两个数之和相等,列式计算即可;(2)由相邻面和相对面的关系,分析判断即可得到答案;(3)由点M所在的棱为两个面共用,可以判断得到点M的位置,根据三角形面积公式,即可得到答案【详解】解:(1)正方体相对面上的两个数字之和相等,故答案为:12;8(2)若面“10”是左面,面“6”在前面,则上面是“2”(3)因为点M所在的棱为两个面共用,所以它的位置有两种情况,第一种情况如下图:设点M左边的顶点为点D,则 第二种情况如下图:综上所述,的面积为:16或80【考点】本题考查正方体的展开图,能够准确区分展开图的相对面和相邻面是解题的
16、关键3、 (1);(2);【解析】【分析】(1)根据立体图形的特点从柱体的形状特征考虑(2)根据面的形状特征考虑(1)解:(1)是四棱柱,(2)是圆柱,(3)是圆锥,(4)是棱锥,(5)是球,(6)是三棱柱,柱体有(1),(2),(6),锥体有(3),(4),球有(5),故答案为:(1),(2),(6);(3),(4);(5);(2)(2)(3)(5)有曲面,其它几何体无曲面,按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6),故答案为:(2),(3),(5);(1),(4),(6)【考点】本题考查了认识立体图形,解决本题的关键是认识柱体的形状特征4、 (
17、1)4,4,6,6,6,10;(2)11,11,20,(3),(4)存在,相应的等式为:【解析】【分析】(1)观察与发现:根据三棱锥、五棱锥的特征填写即可(2)猜想:根据十棱锥的特征填写即可,根据n棱锥的特征的特征填写即可(3)探究:通过列举得到棱锥的顶点数(V)与面数(F)之间的等量关系,通过列举得到棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系(4)拓展:根据棱柱的特征得到棱柱的顶点数(V)、面数(F)、棱数(E)之间的等量关系(1)解:三棱锥中,V3=4,F3=4,E3=6,五棱锥中,V5=6,F5=6,E5=10(2)解:十棱锥中,V10=11,F10=11,E10=20;n
18、棱锥中,Vn=n+1,Fn=n+1,En=2n(3)解:棱锥的顶点数(V)与面数(F)之间的等量关系:V=F,棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=V+F2(4)解:棱柱的顶点数(V)、面数(F)、棱数(E)之间也存在某种等量关系,相应的等式是:V+FE=2【考点】本题主要考查了立体几何的点、棱、面,熟知对应的立体图形的特征是解决本题的关键5、表面积:264cm2,体积:288 cm3【解析】【分析】根据表面积公式,可得答案;根据长方体的体积,可得答案【详解】解:根据题意,则表面积=684+622=192+72=264cm2折叠而成的长方体的体积=686=288cm3【考点】本题考查了展开图折叠成几何题,利用长方体展开图中每个面都有一个全等的对面是解题关键