1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末模拟考试 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列因式分解正确的是()ABCD2、以下四大通讯运营商的企业图标中,是
2、轴对称图形的是()ABCD3、下列电视台标志中是轴对称图形的是()ABCD4、如图,E是AOB平分线上的一点于点C,于点D,连结,则()A50B45C40D255、分式化简后的结果为()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列计算中,不正确的有()A(ab2)3ab6B(3xy2)39x3y6C(2x3)24x6D(a2m)3a6m2、一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,则另一个不能为()A正六边形B正五边形C正四边形D正三角形3、已知关于x的分式方程无解,则m的值为()A0BCD4、下列各式中,计算正确的是() 线
3、 封 密 内 号学级年名姓 线 封 密 外 ABCD5、观察图中尺规作图痕迹,下列结论正确的是()APQ为APB的平分线BPA=PBC点A、B到PQ的距离不相等DAPQ=BPQ第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若分式的值为负数,则x的取值范围是_2、用换元法解方程,如果设,那么原方程组可化为关于,的方程组是_3、已知,则的值是_4、观察下列各等式:,-,-,.,猜想第八个分式_5、小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),的度数是_.四、解答题(5小题,每小题8分,共计40分)1、解分式方程(1)(2)2、计算
4、:(1)(2)3、已知:如图,在中,点为AB的中点(1)如果点在线段上以每秒个单位的速度由点向点运动,同时,点在线段上由点向点运动,运动的时间秒若点的运动速度与点的运动速度相等,时,与是否全等?请说明理由;若点的运动速度与点的运动速度不相等,当与全等时,求点的运动速度(2)若点以(1)中的运动速度从点出发,点以原来的运动速度从点同时出发,都逆时针沿三边运动,则经过多长时间,点与点第一次在的哪条边上相遇?此时相遇点距离点的路程是多少? 线 封 密 内 号学级年名姓 线 封 密 外 4、计算(1);(2)5、已知:如图,是的角平分线,于点 ,于点,求证:是的中垂线 -参考答案-一、单选题1、D【解
5、析】【分析】根据因式分解的方法,逐项分解即可【详解】A. ,不能因式分解,故该选项不正确,不符合题意;B. 故该选项不正确,不符合题意;C. ,故该选项不正确,不符合题意;D. ,故该选项正确,符合题意故选D【考点】本题考查了因式分解,掌握因式分解的方法是解题的关键2、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D【考点】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键3、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠
6、,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键4、A【解析】【分析】根据角平分线的性质得到ED=EC,得到EDC=,求出,利用三角形内角和定理求出答案【详解】解:OE是的平分线,ED=EC, EDC=,故选:A【考点】此题考查了角平分线的性质定理,等腰三角形的性质,三角形内角和定理,熟记角平分线的
7、性质定理是解题的关键5、B【解析】【分析】根据异分母分式相加减的运算法则计算即可异分母分式相加减,先通分,再根据同分母分式相加减的法则计算【详解】解:故选:B【考点】本题主要考查了分式的加减,熟练掌握分式通分的方法是解答本题的关键二、多选题1、ABCD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据积的乘方和幂的乘方运算法则逐一求解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、,故此选项符合题意;故选ABCD【考点】本题主要考查了积的乘方和幂的乘方,解题的关键在于能够熟练掌握相关知识进行求解2、ABD【解析】【分析】平面镶嵌
8、要求多边形在同一个顶点处的所有角的和为 根据平面镶嵌的要求逐一求解各选项涉及的多边形在一个顶点处的所有的角之和,从而可得答案.【详解】解: 一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形, 在顶点处的四个角的和为: 而正三角形、正四边形、正六边形的每一个内角依次为: 当第四个多边形为正六边形时, 故符合题意;当第四个多边形为正五边形时, 故符合题意;当第四个多边形为正四边形时, 故不符合题意;当第四个多边形为正三角形时, 故符合题意;故选:【考点】本题考查的是平面镶嵌,熟悉平面镶嵌时,围绕在一个顶点处的所有的角组成一个周角是解题的关键.3、ABD【
9、解析】【分析】先将分式方程化为整式方程 ,再由原分式方程无解,可得 或 ,即可求解【详解】解:化为整式方程,得: ,即 ,关于x的分式方程无解, 或 ,当时, , 线 封 密 内 号学级年名姓 线 封 密 外 当,即或 时, 或 ,解得: 或 故选:ABD【考点】本题主要考查了分式方程无解的问题,理解并掌握分式方程无解分为两种情况:分式方程产生增根;整式方程本身无解是解题的关键4、ABC【解析】【分析】先去括号,再合并同类项判断 把系数与同底数幂分别相乘判断 把单项式乘以多项式的每一项,再把所得的积相加判断 由多项式乘以多项式的法则判断 从而可得答案.【详解】解:故符合题意;,故符合题意;,故
10、符合题意;,故不符合题意;故选:【考点】本题考查的是整式的加减运算,单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,掌握以上运算的运算法则是解题的关键.5、ABD【解析】【分析】根据图形的画法得出PQ是APB的角平分线,再根据尺规作图的画法结合等腰三角形的性质逐项分析四个选项即可得出结论【详解】解:根据尺规作图的画法可知:PQ是APB的角平分线A、PQ是APB的平分线,原选项正确;B、根据角平分线的作法得PA=PB,原选项正确;C、PA=PB,PQ是APB的平分线,PQAB,PQ平分AB,点A、B到PQ的距离相等,原选项错误;D、PQ是APB的平分线,APQ=BPQ,原选项正确故选:AB
11、D【考点】本题考查了尺规作图中的作角的平分线以及等腰三角形的性质,本题属于基础题,难度不大,牢记尺规作图的方法和步骤是关键三、填空题1、【解析】【分析】根据分式值为负的条件列出不等式求解即可【详解】解:0x-20,即 线 封 密 内 号学级年名姓 线 封 密 外 故填:【考点】本题主要考查了分式值为负的条件,根据分式小于零的条件列出不等式成为解答本题的关键2、【解析】【分析】设,则,从而得出关于、的二元一次方程组【详解】解:设,原方程组变为故答案为:【考点】本题考查用换元法使分式方程简便换元后再在方程两边乘最简公分母可以把分式方程转化为整式方程应注意换元后的字母系数3、15【解析】【分析】根据
12、幂的乘方运算法则以及同底数幂的乘法法则计算即可【详解】解:2a3,4b5,2a2b2a22b2a4b3515,故答案为:15【考点】本题主要考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘4、【解析】【分析】通过观察找出规律即可,第n个分式可表示为【详解】解:当n=8时,求得分式为:所以答案为:【考点】本题考查了规律型:数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力本题的关键是得出规律5、45【解析】【分析】根据折叠过程可知,在折叠过程中角一直是轴对称的折叠.【详解
13、】 线 封 密 内 号学级年名姓 线 封 密 外 在折叠过程中角一直是轴对称的折叠,故答案为45【考点】考核知识点:轴对称.理解折叠的本质是关键.四、解答题1、(1)x=-2;(2)无解【解析】【分析】(1)观察可得最简公分母是2(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解(2)观察可得最简公分母是(x+2)(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】解:经检验时,是原分式方程的解; 经检验时,不是原分式方程的解;原分式方程无解;【考点】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)
14、解分式方程一定注意要验根2、(1);(2)【解析】【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可【详解】解:(1)=; 线 封 密 内 号学级年名姓 线 封 密 外 (2) =【考点】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键3、(1)BPDCQP,理由见解析;点Q的运动速度是4厘米/秒;(2)经过了24秒,点P与点Q第一次在BC边上相遇,此时相遇点距离B点的路程是6厘米【解析】【分析】(1)先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得B=C,最后根据SA
15、S即可证明;因为VPVQ,所以BPCQ,又B=C,要使BPD与CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为VQVP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得【详解】解:(1)t=1(秒),BP=CQ=3(厘米),AB=12,D为AB中点,BD=6(厘米),又PC=BC-BP=9-3=6(厘米),PC=BD,AB=AC,B=C,在BPD与CQP中,BPDCQP(SAS);VPVQ,BPCQ,又B=C,要使BPDCPQ,只能BP=CP=4.5,BPDCP
16、Q,CQ=BD=6点P的运动时间t=1.5(秒),此时VQ=4(厘米/秒);答:点Q的运动速度是4厘米/秒;(2)因为VQVP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得4x=3x+212,解得x=24(秒),此时P运动了243=72(厘米),又ABC的周长为33厘米,72=332+6,点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇,此时相遇点距离B点 线 封 密 内 号学级年名姓 线 封 密 外 的路程是6厘米【考点】本题考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用,解题的根据是熟练掌握三角形
17、全等的判定和性质4、(1) ;(2)【解析】【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解【详解】解:(1)原式;(2)原式【考点】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键5、见解析.【解析】【分析】由AD是ABC的角平分线,DEAB,DFAC,根据角平分线的性质,可得DE=DF,BED=CFD=90,继而证得RtBEDRtCFD,则可得B=C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.【详解】解:是的角平分线,在和中,是的角平分线,是的中垂线.【考点】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质注意掌握三线合一性质的应用.