1、八年级数学上册第十四章整式的乘法与因式分解同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、数学兴趣小组开展活动:把多项式分解因式,组长小明发现小组里有以下四种结果与自己的结果不同,他认真思考后,发
2、现其中还有一种结果是正确的,你认为正确的是()ABCD2、下列各式因式分解正确的是()Aa2+4ab+4b2=(a+4b)2B2a2-4ab+9b2=(2a-3b)2C3a2-12b2=3(a+4b)(a-4b)Da(2a-b)+b(b-2a)=(a-b)(2a-b)3、下列运算正确的是()ABCD4、不论x、y为什么实数,代数式的值()A可为任何实数B不小于7C不小于2D可能为负数5、下列计算正确的是()ABCD6、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()ABCD7、下列由左边到右边的变形,属于因式分解的是
3、()A(a+5)(a5)a225Bmx+my+2m(x+y)+2Cx29(x+3)(x3)D8、已知,当时,则的值是()ABCD9、已知a96,b314,c275,则a、b、c的大小关系是()AabcBacbCcbaDbca10、已知,则的值为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若xm6,xn2,则x2m3n_2、已知x2+mx+16能用完全平方公式因式分解,则m的值为 _3、因式分解:_4、已知,则_5、某班黑板是一个长方形,它的面积为6a2-9ab+3a,已知这个长方形的长为3a,则宽为_三、解答题(5小题,每小题10分,共计50分)1、(1
4、)已知4 m=a,8n=b,用含a、b的式子表示下列代数式:求:22 m+3n的值;求:24 m6n的值;(2)已知28x16=226,求x的值2、设是一个两位数,其中a是十位上的数字(1a9)例如,当a4时,表示的两位数是45(1)尝试:当a1时,1522251210025;当a2时,2526252310025;当a3时,3521225 ;(2)归纳:与100a(a1)25有怎样的大小关系?试说明理由(3)运用:若与100a的差为2525,求a的值3、4、计算: (1)(3x+2)(3x-2)(2)2x(x4)+3(x1)(x+3) (3) (4)(x+2y)(x-2y)-(x+y)25、已
5、知,均为整数,且,求的所有可能值-参考答案-一、单选题1、D【解析】【分析】首先提出二次项系数,再利用完全平方公式进行分解即可【详解】解:故选:D【考点】此题主要考查了分解因式,关键是掌握分解因式首先提公因式,再利用公式法进行分解2、D【解析】【分析】根据因式分解的定义:把一个多项式写成几个因式的积的形式进行判断即可【详解】a2+4ab+4b2=(a+2b)2,故选项A不正确;2a2-4ab+9b2=(2a-3b)2不是因式分解,B不正确;3a2-12b2=3(a+2b)(a-2b),故选项C不正确;a(2a-b)+b(b-2a)=(a-b)(2a-b)是因式分解,D正确,故选D【考点】本题考
6、查的是因式分解的概念,把一个多项式写成几个因式的积的形式叫做因式分解,在判断一个变形是否是因式分解时,看是否是积的形式即可3、D【解析】【分析】直接利用幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确;故选:D【考点】本题主要考查了幂的乘方运算法则,积的乘方运算法则,同底数幂的乘除运算法则及完全平方公式,正确掌握相关运算法则是解题关键4、C【解析】【分析】要把代数式进行拆分重组凑完全平方式,来判断其值的范围具体如下:【详解】(x22x1)(y24y4)2(x1)2(y2)2
7、2,(x1)20,(y2)20,(x1)2(y2)222,2故选:C【考点】主要利用拆分重组的方法凑完全平方式,把未知数都凑成完全平方式,就能判断该代数式的值的范围要求掌握完全平方公式,并会熟练运用5、C【解析】【分析】直接利用同底数幂的乘除运算法则、幂的乘方和积的乘方运算法则分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项正确;D、,故此选项错误;故选C【考点】此题主要考查了同底数幂的乘除运算、幂的乘方和积的乘方运算,正确掌握相关运算法则是解题关键6、B【解析】【分析】矩形面积减去阴影部分面积,求出空白部分面积即可【详解】空白部分的面积为故选B【考点】此题考
8、查了整式的混合运算,熟练掌握运算法则是解本题的关键7、C【解析】【详解】试题解析:把一个多项式分解成几个整式积的形式,叫因式分解,故选C.8、A【解析】【分析】根据已知,得a=5b,c=5d,将其代入即可求得结果【详解】解:a=5b,c=5d,故选:A【考点】本题考查的是求代数式的值,应先观察已知式,求值式的特征,采用适当的变形,作为解决问题的突破口9、C【解析】【分析】根据幂的乘方可得:a=312,c=315,易得答案【详解】因为a=312,b,c=315,所以cba故选C10、A【解析】【分析】先利用已知条件得到x212x,利用整体代入得到原式,利用多项式乘多项式得到原式,再将x212x代
9、入进而可求得答案【详解】解:,故选:A【考点】本题考查了整体代入的方法,整式乘法的运算法则,灵活运用整体思想及熟练掌握整式乘法的运算法则是解决本题的关键二、填空题1、【解析】【分析】依据同底数幂的除法法则以及幂的乘方法则,即可得到结论【详解】解:,=368=,故答案为:【考点】本题主要考查了同底数幂的除法法则以及幂的乘方法则,熟练掌握运算法则是解题关键2、【解析】【分析】利用完全平方公式的结构特征判断,确定出m的值即可得到答案【详解】解:要使得能用完全平方公式分解因式,应满足,故答案为:【考点】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键3、【解析】【分析
10、】两次运用平方差公式进行因式分解即可得到答案【详解】解:=故答案为:【考点】本题考查了运用平方差公式分解因式,熟练掌握因式分解的方法是解本题的关键4、24【解析】【分析】根据平方差公式计算即可【详解】解:,故答案为:24【考点】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键5、2a-3b+1【解析】【分析】根据长方形的面积公式可知:长宽=面积,则宽=面积长,列式计算即可完成.【详解】由题意可得,长方形的宽为:(6a2-9ab+3a)3a=2a-3b+1故答案为2a-3b+1【考点】本题考查多项式除以单项式,熟练掌握长方形面积公式以及多项式除以单项式的运算法则是解
11、题关键.三、解答题1、(1),;(2)【解析】【分析】(1)根据同底数幂的乘法运算的逆运算和幂的乘方运算的逆运算进行计算;根据同底数幂的除法运算的逆运算和幂的乘方运算的逆运算进行计算;(2)将式子左边的数都写成以2为底的幂,再用同底数幂的乘法进行计算,和右边的数比较,列式求出x的值【详解】解:(1);(2),得,解得【考点】本题考查幂的运算,解题的关键是掌握同底数幂的乘除法的逆运算和幂的乘方运算的逆运算的运算法则2、 (1);(2)相等,证明见解析;(3)【解析】【分析】(1)仔细观察的提示,再用含有相同规律的代数式表示即可;(2)由再计算100a(a1)25,从而可得答案;(3)由与100a
12、的差为2525,列方程,整理可得再利用平方根的含义解方程即可(1)解:当a1时,1522251210025;当a2时,2526252310025;当a3时,3521225;(2)解:相等,理由如下: 100a(a1)25= (3) 与100a的差为2525, 整理得: 即 解得: 1a9,【考点】本题考查的是数字的规律探究,完全平方公式的应用,单项式乘以多项式,利用平方根的含义解方程,理解题意,列出运算式或方程是解本题的关键3、【解析】【分析】先提公因式4,将(x+y)看成一个整体,利用完全平方公式分解因式即可【详解】解:原式【考点】本题考查了提公因式法和完全平方公式法分解因式,解答的关键是掌
13、握完全平方公式的结构特征,公式中的a、b可以表示数、字母,也可以是整式4、(1);(2);(3);(4)【解析】【分析】(1)利用平方差公式计算即可;(2)根据多项式乘以多项式、单项式乘以多项式进行计算即可;(3)根据幂的运算法则进行计算即可;(4)根据完全平方公式和平方差公式进行计算即可【详解】(1)(3x+2)(3x-2) (2)2x(x4)+3(x1)(x+3) (3) (4)(x+2y)(x-2y)-(x+y)2 【考点】本题考查了整式的混合运算,熟记平方差公式、完全平方公式和运算性质是解题的关键5、,【解析】【分析】根据多项式乘以多项式的计算法则求出即可得到,由此进行求解即可【详解】解:,a,b,均为整数,或或或或或或或,或或,或或m取的值有5或7【考点】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加