1、人教版八年级数学上册第十五章分式专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式成立的是()A(3)29B(3)2Ca14Da2b62、当x2时,分式的值是()A15B3C3D153、下列
2、分式,中,最简分式有()A1个B2个C3个D4个4、已知,则代数式的值是()ABCD5、已知,用a表示c的代数式为()ABCD6、下列运算中,错误的是()ABCD7、要把分式方程化为整式方程,方程两边要同时乘以()ABCD8、方程的解为()Ax=1Bx=0Cx=Dx=19、已知 ,则 的值是()ABC2D-210、下列运算正确的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:(1)_;(2)_2、计算的结果是_3、关于x的分式方程无解,则m的值为_4、计算的结果是_5、填空:三、解答题(5小题,每小题10分,共计50分)1、如果解关于的方程会产生增根
3、,求的值.2、先化简,(x2),然后从2x2范围内选取一个合适的整数作为x的值代入求值3、先化简:,然后选择一个合适的x值代入求值4、已知ab2018,求代数式的值5、先化简,再求值:(1+),请从4,3,0,1中选一个合适的数作为a的值代入求值-参考答案-一、单选题1、B【解析】【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可【详解】解:A、(-3)2=9-9,本选项错误;B、(-3)-2=,本选项正确;C、(a-12)2=a-24a14,本选项错误;D、(-a-1b-3)-2=a2b6-a2b6,本选项错误故选B【考点】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知
4、识点的概念和运算法则2、A【解析】【分析】先把分子分母进行分解因式,然后化简,最后把代入到分式中进行正确的计算即可得到答案.【详解】解:把代入上式中原式故选A.【考点】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握相关知识点进行求解运算.3、B【解析】【分析】根据最简分式的定义(分式的分子和分母除1以外没有其它的公因式,叫最简分式)逐个判断即可【详解】解:,故原式不是最简分式;是最简分式,是最简分式,故原式不是最简分式,最简分式有2个故选:B【考点】本题考查了最简分式的定义,能熟记最简分式的定义是解此题的关键4、D【解析】【分析】利用等式的性质对变形可得,利用分式的性质对变形可得,从
5、而代入求值即可【详解】由条件可知,即:,根据分式的性质得:,将代入上式得:原式,故选:D【考点】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键5、D【解析】【分析】将代入消去b,进行化简即可得到结果【详解】解:把代入,得,故选D【考点】本题考查了分式的混合运算,列代数式熟练掌握运算法则是解题的关键6、D【解析】【分析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变据此作答【详解】解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分
6、母同时乘以10,分式的值不变,故C正确;D、,故D错误故选D【考点】本题考查了分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为07、D【解析】【分析】根据最简公分母的确定方法确定分式的最简公分母即可解答.【详解】解:分式的最简公分母2x(x-2),把分式方程化为整式方程,方程两边要同时乘以2x(x-2).故选D.【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根8、D【解析】【详解】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经
7、检验即可得到分式方程的解详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选D点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验9、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键10、D【解析】【分析】根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=a2b2,故本选项错误;C、原式=a6,故本选项错误;D、原式=2a3,故本选项正确故选D【考点】本题考查了同底数幂
8、的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键二、填空题1、 #0.5 【解析】【分析】(1)由负整数指数幂的运算法则计算即可(2)由零指数幂的运算法则计算即可【详解】(1)(2)故答案为:,【考点】本题考查了负整数指数幂以及零指数幂的运算法则,即任何不等于0的数的0次幂都等于1;是由在,时转化而来的,也就是说当同底数幂相除时,若被除式的指数小于除式的指数,则转化成负指数幂的形式2、【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果即可【详解】解:故答案为:【考点】本题主要考查了分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则3、1
9、或6或【解析】【分析】方程两边都乘以,把方程化为整式方程,再分两种情况讨论即可得到结论【详解】解:, , ,当时,显然方程无解,又原方程的增根为:,当时,当时,综上当或或时,原方程无解故答案为:1或6或【考点】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键4、【解析】【分析】先通分,再相加即可求得结果【详解】解:,故答案为:【考点】此题考察分式的加法,先通分化为同分母分式再相加即可5、#-y+x【解析】【分析】由题意知,根据分式的性质,分子和分母同时乘以或除以(不为0的数或整式),分式值不变,进行化简即可【详解】解:由题意可知故答案为:【考点】本题考查了因式分解,分式
10、的性质,解题的关键在于正确的化简计算三、解答题1、k=2【解析】【分析】首先根据分式方程的解法求出方程的解,然后根据增根求出k的值【详解】两边同时乘以(x2)可得:x=2(x2)+k, 解得:x=4k,方程有增根,x=2, 即4k=2,解得:k=2【考点】本题主要考查的是分式方程有增根的情况,属于基础题型解决这种问题时,首先我们将k看作已知数,求出方程的解,然后根据解为增根得出答案2、x+3,2【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得【详解】解:原式= = =(x3)=x+3x 2,可取x1,则原式1+32【考点】本题主要考查分式的化简
11、求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件3、化简结果是:,选择x=1时代入求值为-1.【解析】【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可【详解】解:原式.当x=1时代入,原式=.故答案为:化简结果是,选择x=1时代入求值为-1.【考点】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键,最后在选择合适的x求值时要保证选取的x不能使得分母为0.4、4036【解析】【详解】试题分析:根据分式的乘除法,先对分子分母分解因式,然后把除法化为乘法,再约分,然后代入求值.试题解析:原式(ab)(ab)2(ab)ab2 018,原式22 0184 036.5、,5【解析】【分析】先对分式进行化简,然后根据分式有意义的条件选择一个合适的值代入求解即可【详解】解:原式=,a(a+3)0,a+40,a4,3,0,a1,当a1时,原式【考点】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键